几种材料的等效粘性系数、初始可动位错密度和拖曳应力

张万甲 刘仓理

张万甲, 刘仓理. 几种材料的等效粘性系数、初始可动位错密度和拖曳应力[J]. 高压物理学报, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002
引用本文: 张万甲, 刘仓理. 几种材料的等效粘性系数、初始可动位错密度和拖曳应力[J]. 高压物理学报, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002
ZHANG Wan-Jia, LIU Cang-Li. Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002
Citation: ZHANG Wan-Jia, LIU Cang-Li. Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002

几种材料的等效粘性系数、初始可动位错密度和拖曳应力

doi: 10.11858/gywlxb.2006.04.002
详细信息
    通讯作者:

    张万甲

Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials

More Information
    Corresponding author: ZHANG Wan-Jia
  • 摘要: 基于LY12铝、MB2镁、铅、2#铁和不锈钢等几种材料的弹性前驱波幅度随传播距离衰减的实验结果,应用含位错参量的速率相关本构方程,按照Gilman提议的位错运动速度的热激活模型,得出了LY12铝、MB2镁、铅的可动位错密度N0和拖曳应力0的下限值分别为106 cm-2和0.1 GPa量级,不锈钢的N0和0为108 cm-2和1.5 GPa量级。根据弹性前驱波幅度衰减曲线,还得出了2#铁、不锈钢的有效粘性系数的上限值为104 Pas量级。LY12铝、MB2 镁的有效粘性系数的上限值为103 Pas量级。

     

  • Mayers M A. Dynamic Behavior of Materials [M]. New York: Brisbane Toronto, Johm Willy Sons, Inc, 1994: 405-408.
    Gilman J J. Dislocation Dynamics and Response of Materials to Impact [J]. Appl Mech Rev, 1968, 21(8): 767.
    Johnson J N, Barker L M. Dislocation Dynamics and Steady Plastic Wave Profiles in 6061-T Aluminum [J]. J Appl Phys, 1969, 40(11): 4321-4334.
    Liu C L. Phenomenological Description of Viscous Coefficient on the Shock Wave Front [J]. Explosion and Shock Waves, 1989, 9(1): 61-67. (in Chinese)
    刘仓理. 冲击波阵面上粘度的一种唯象描述 [J]. 爆炸与冲击, 1989, 9(1): 61-67.
    Swegle J W, Grady D E. Shock Viscosity and the Prediction of Shock Wave Rise Times [J]. J Appl Phys, 1985, 58(2): 692-701.
    Grady D E. Strain-Rate Dependence of the Effective Viscosity under Steady-Wave Shock Compression [J]. Appl Phys Lett, 1981, 38(10): 825-827.
    Moss W C. Viscosity and Steady Shocks [J]. Appl Phys Lett, 1985, 47(4): 372.
    Taylor J W. Dislocation Dynamics and Dynamic Yielding [J]. J Appl Phys, 1965, 36(10): 3146-3150.
    Chhabildal L C, Asay J R. Rise-Time Measurements of Shock Transitions in Aluminum, Copper and Steel [J]. J Appl Phys, 1979, 50(4): 2749-2756.
    Mineev V N, Mineev A V. Viscosity of Metals under Shock-Loading Conditions [J]. J Phys France, 1997, 7(C3): 583-585.
    Johnson J N, Hixson R C, Gray G T, et al. Quasielastic Release in Shock-Compressed Solids [J]. J Appl Phys, 1992, 72(2): 429-441.
    Saimoto S. Correlation of the Applied Strain Rate with the Operative Mean Slip and Dislocation Velocities [J]. Mater Sci Eng A, 2004, 387: 129-132.
  • 加载中
计量
  • 文章访问数:  8050
  • HTML全文浏览量:  446
  • PDF下载量:  984
出版历程
  • 收稿日期:  2005-06-01
  • 修回日期:  2005-12-28
  • 发布日期:  2006-12-05

目录

    /

    返回文章
    返回