矩形管内临界爆轰动力学数值分析

王昌建 徐胜利

王昌建, 徐胜利. 矩形管内临界爆轰动力学数值分析[J]. 高压物理学报, 2006, 20(2): 133-138 . doi: 10.11858/gywlxb.2006.02.004
引用本文: 王昌建, 徐胜利. 矩形管内临界爆轰动力学数值分析[J]. 高压物理学报, 2006, 20(2): 133-138 . doi: 10.11858/gywlxb.2006.02.004
WANG Chang-Jian, XU Sheng-Li. Numerical Analysis of Marginal Detonation Dynamics in a Rectangular Tube[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 133-138 . doi: 10.11858/gywlxb.2006.02.004
Citation: WANG Chang-Jian, XU Sheng-Li. Numerical Analysis of Marginal Detonation Dynamics in a Rectangular Tube[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 133-138 . doi: 10.11858/gywlxb.2006.02.004

矩形管内临界爆轰动力学数值分析

doi: 10.11858/gywlxb.2006.02.004
详细信息
    通讯作者:

    王昌建

Numerical Analysis of Marginal Detonation Dynamics in a Rectangular Tube

More Information
    Corresponding author: WANG Chang-Jian
  • 摘要: 对矩形管内临界爆轰动力学特征进行了数值分析。采用基元反应描述爆轰化学反应过程,采用二阶附加半隐的龙格-库塔法和5阶WENO格式求解二维反应欧拉方程。对于25%氩稀释化学计量比的氢氧预混气体,当管道宽度为30 mm、初温为300 K时,产生临界爆轰的预混气体初压为3.5 kPa。在此临界条件下,获得了临界爆轰胞格结构、沿壁面的速度和峰值压力曲线及流场波系演变特征。着重对比分析了矩形管内临界爆轰与普通爆轰在爆轰波速度、平均速度、胞格宽长比、横波结构、未反应气囊及旋涡结构之间的差异,深入认识了临界爆轰的不稳定性和化学反应动力学特征。

     

  • Fickett W, Davis W C. Detonation [M]. California: University of California Press, 1979: 307-337.
    Wang C J, Xu S L. Numerical Study on Cellular Detonation in a Straight Tube Based on Detailed Chemical Reaction Model [J]. Explosion and Shock Waves, 2005, 25(5): 405-416. (in Chinese)
    王昌建, 徐胜利. 直管内胞格爆轰的基元反应数值研究 [J]. 爆炸与冲击, 2005, 25(5): 405-416.
    Gamezo V N, Vasil'ev A A, Khokhlov A M, et al. Fine Cellular Structures Produced by Marginal Detonations [J]. Proceedings of the Combustion Institute, 2000, 28: 611-667.
    Bone W A, Fraser R P, Wheeler W H. A Photographic Investigation of Flame Movements in Gaseous Explosive [J]. Philos Trans Roy Soc, London, A, 1935, 235: 29-78.
    Campbell C, Woodhead D W. The Ignition of Gases by an Explosive Wave [J]. J Chem Soc, 1927, 130: 1572-1578.
    Fay J A. A Mechanical Theory of Spinning Detonation [J]. J Chem Phys, 1952, 20: 942-950.
    Huang Z W, Lefebvre M H, Tiggelen P J V. Experiments on Spinning Detonations with Detailed Analysis of the Shock Structure [J]. Shock Waves, 2000, 10: 119-125.
    Oran E S, Young T R, Boris J P, et al. Weak and Strong Ignition(Ⅰ): Numerical Simulation of Shock Tube Experiments [J]. J Combust Flame, 1982, 48: 135-148.
    Zhong X L. Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Noneqilibrium Reactive Flows [J]. J Comp Phys, 1996, 128: 19-31.
    Shu C W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws [R]. ICASE Report 97-65, 1997.
    Wang C J. Study on Gaseous Detonation Propagation Through Tubes with Complex Geometry [D]. Hefei: University of Science and Technology of China, 2004. (in Chinese)
    王昌建. 气相爆轰波在复杂管道中传播的研究 [D]. 合肥: 中国科学技术大学, 2004.
    Wang C J, Xu S L. Numerical Simulation on Mach Reflection of Cellular Detonation [A]. //Special Group of Shock Wave and Shock Tube of the Chinese Society of Theoretical and Applied Mechanics. Proceedings of the 11th Chinese National Symposium on Shock Wave [C]. Mianyang, 2004: 115-119. (in Chinese)
    王昌建, 徐胜利. 胞格爆轰马赫反射数值模拟 [A]. //中国力学学会直属激波与激波管专业组. 第十一届全国激波与激波管学术会议文集 [C]. 绵阳, 2004: 115-119.
  • 加载中
计量
  • 文章访问数:  7471
  • HTML全文浏览量:  323
  • PDF下载量:  803
出版历程
  • 收稿日期:  2005-12-12
  • 修回日期:  2006-03-14
  • 发布日期:  2006-06-05

目录

    /

    返回文章
    返回