无氧铜冲击熔化温度的辐射法测量

张凌云 戴诚达 许灿华 谭华

张凌云, 戴诚达, 许灿华, 谭华. 无氧铜冲击熔化温度的辐射法测量[J]. 高压物理学报, 2005, 19(4): 365-370 . doi: 10.11858/gywlxb.2005.04.015
引用本文: 张凌云, 戴诚达, 许灿华, 谭华. 无氧铜冲击熔化温度的辐射法测量[J]. 高压物理学报, 2005, 19(4): 365-370 . doi: 10.11858/gywlxb.2005.04.015
ZHANG Ling-Yun, DAI Cheng-Da, XU Can-Hua, TAN Hua. Melting Temperatures of OFHC Copper under Shock Compression Measured by Optical Radiometry Techniques[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 365-370 . doi: 10.11858/gywlxb.2005.04.015
Citation: ZHANG Ling-Yun, DAI Cheng-Da, XU Can-Hua, TAN Hua. Melting Temperatures of OFHC Copper under Shock Compression Measured by Optical Radiometry Techniques[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 365-370 . doi: 10.11858/gywlxb.2005.04.015

无氧铜冲击熔化温度的辐射法测量

doi: 10.11858/gywlxb.2005.04.015
详细信息
    通讯作者:

    张凌云

Melting Temperatures of OFHC Copper under Shock Compression Measured by Optical Radiometry Techniques

More Information
    Corresponding author: ZHANG Ling-Yun
  • 摘要: 在发生冲击熔化的情况下,金属样品/窗口界面压力下的熔化温度与卸载温度数值相等,且十分接近于界面温度值。根据这一结论,利用二级轻气炮加载手段和光辐射法测温技术,用氟化锂(LiF)单晶作透明窗口,获得了110~140 GPa压力范围内无氧铜的熔化温度。实验表明,无氧铜的高压熔化温度数据与文献发表的无氧铜高压声速实验结果是一致的,铜的高压熔化规律可用Lindemann熔化定律近似描述。采用的熔化温度测量方法不必反演出冲击温度,简化了冲击熔化温度的数据处理方法,为金属冲击熔化温度测量提供了一种潜在的技术途径。

     

  • Belonoshko A B, Ahuja R, Eriksson O, et al. Quasi ab Initio Molecular Dynamic Study of Cu Melting [J]. Phys Rev B, 2000, 61: 3838-3844.
    Moriarty J A. High-Pressure Ion-Thermal Properties of Metals from ab Initio Interatomic Potentials [A]. Gupta Y M. Shock Waves in Condensed Matter-1985 [C]. New York: Plenum Press, 1986. 101-106.
    Hayes D, Hixson R S, McQueen R G. Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of States from Release Wave Measurements in Shock-Loaded Copper [A]. Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: AIP, 2000. 483-486.
    Williams Q, Jeanloz R, Bass D J, et al. The Melting Curve of Iron to 250 Gigapascals: Implications for the Thermal State of the Earth [J]. Science, 1987, 236: 181-182.
    Yoo C S, Holmes N C, Ross M, et al. Shock Temperatures and Melting of Iron at Earth Core Conditions [J]. Phys Rev Lett, 1993, 70: 3931-3934.
    Grover R, Urtiew P A. Thermal Relation in Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146-152.
    Nellis W J, Yoo C S. Issues Concerning Shock Temperature Measurements of Iron and Other Metals [J]. J Geophys Res, 1990, 95(B13): 21749-21752.
    Tan H, Ahrens T J. Shock Temperature Measurements for Metals [J]. High Pressure Res, 1990, 2: 159-182.
    Dai C D, Tan H, Geng H Y. Model for Assessing the Melting on Hugoniots of Metals: Al, Pb, Cu, Mo, Fe and U [J]. J Appl Phys, 1992, 92: 5019-5026.
    Tan H. Shock Temperature Measurement of Metals (I)-The Calibration of Pyrometer and the Determination of Interfacial Radiation Temperature [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254-262. (in Chinese)
    谭华. 金属的冲击波温度测量(I)--高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254-262.
    Boslough M B, Ahrens T J. A Sensitive Time-Resolved Radiation Pyrometer for Shock-Temperature Measurements above 1500 K [J]. Rev Sci Instrum, 1989, 60(12): 3711-3716.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1980, 52(5): 3363-3374
    Touloukian Y S, Kirby R K, Tayor R E, et al. Thermophysical Properties of Matter(12): Thermal Expanansion Metallic Elements and alloy [M]. New York: Plenum Press, 1975.
    Carter W J. Equation of State of Some Alkali Halides [J]. High Temp High Pressure, 1973, 5: 313-318.
    Tan H, Dai C D. Shock Temperature Measurement of Metals(IV)-Three Layer Model and Its Applications [J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 81-90. (in Chinese)
    谭华, 戴诚达. 金属的冲击波温度测量(IV)--三层介质模型及其应用 [J]. 高压物理学报, 2000, 14(2): 81-90.
    Jing F Q. Experimental Equation of State(2nd ed) [M]. Bejing: Science Press, 1999. (in Chinese)
    经福谦. 实验物态方程导引(第2版) [M]. 北京: 科学出版社, 1999.
    Hare D E, Holmes N C, Webb D J. Shock-Wave Induced Optical Emission from Sapphire in the Stress Range 12 to 45 GPa: Images and Spectra [J]. Phys Rev B, 2002, 66: 014108-1/11.
    Yoo C S, Holmes N C, See E. Shock-Induced Optical Changes in Al2O3 at 200 GPa: Implications for Shock Temperature Measurements in Metals [A]. Schmidt S C, Dick R D, Forbes J W, et al. Tasker Shock Compression of Condensed Matter-1991 [C]. New York: Elsevier Science, 1992. 733-736.
  • 加载中
计量
  • 文章访问数:  8646
  • HTML全文浏览量:  427
  • PDF下载量:  767
出版历程
  • 收稿日期:  2004-05-08
  • 修回日期:  2004-08-01
  • 发布日期:  2005-12-05

目录

    /

    返回文章
    返回