零温物态方程输入参数B0K、B0K和0K的确定

吴强 经福谦 李欣竹

吴强, 经福谦, 李欣竹. 零温物态方程输入参数B0K、B0K和0K的确定[J]. 高压物理学报, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001
引用本文: 吴强, 经福谦, 李欣竹. 零温物态方程输入参数B0K、B0K和0K的确定[J]. 高压物理学报, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001
WU Qiang, JING Fu-Qian, LI Xin-Zhu. Determination of the Input Parameters B0K, B0K and 0K for 0 K Universal Isothermal Equation of State[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001
Citation: WU Qiang, JING Fu-Qian, LI Xin-Zhu. Determination of the Input Parameters B0K, B0K and 0K for 0 K Universal Isothermal Equation of State[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001

零温物态方程输入参数B0K、B0K和0K的确定

doi: 10.11858/gywlxb.2005.02.001
详细信息
    通讯作者:

    吴强

Determination of the Input Parameters B0K, B0K and 0K for 0 K Universal Isothermal Equation of State

More Information
    Corresponding author: WU Qiang
  • 摘要: 在对Grneisen系数高温高压下演化特性不作任何假设的前提下,建立了一种不依赖于等温物态方程具体形式,通过Hugoniot实验数据直接确定0 K零压等温体积模量B0K及其对压力的一阶导数B0K和初始密度0K等0 K物态方程输入参数的方法。通过与实验和理论数据的分析和比较,表明用这一方法确定的B0K和B0K不仅合理,而且具有很高的精度,特别是B0K的精度,要优于目前传统超声实验的测量精度。此外,这一方法所确定的0K不仅在Grneisen物态方程的框架内与相应的室温零压特性参数相适配,而且与低温热膨胀实验数据所确定的近0 K初始密度0E非常吻合。

     

  • 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1986.
    徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986.
    汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 长沙: 国防科技大学出版社, 1999.
    Zharkov V N, Kalinin V A. Equation of State at High Pressures and Temperature [M]. New York: Plenum Consultants Bureau, 1971.
    Poirier J P. Introduction to the Physics of the Earth's Interior [M]. New York: Cambridge University Press, 1991.
    Holzapfel W B. Molecular Systems under High Pressure [M]. New York: Elsevier Science, 1991.
    Anderson O L. Equations of State of Solids for Geophysics and Ceramic Science [M]. New York: Oxford University Press, 1995.
    Poirer J P, Tarantola A. A Logarithmic Equation of State [J]. Phys Earth Planet Inter, 1998, 109: 1-8.
    Bose R S, Bose R P. An Equation of State Applied to Solid up to 1 TPa [J]. J Phys: Condens Matter, 1999, 11: 10375-10391.
    Bose R P, Bose R S. Applicability of Three-Parameter Equation of State of Solids: Compatibility with First Principles Approaches and Application to Solids [J]. J Phys: Condens Matter, 2003, 15: 1643-1663.
    Hofmeister A M. IR Spectroscopy of Alkali Halides at Very High Pressures: Calculation of Equations of State and of the Response of Bulk Moduli to the B1-B2 Phase Transition [J]. Phys Rev B, 1997, 56: 5835-5855.
    Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties(2nd ed)[M]. Cambridge, MA: MIT, 1971.
    Vaidya S N, Kennedy G C. Compressibility of 18 Metals to 45 kbar [J]. J Phys Chem Solids, 1970, 31: 2329-2345.
    Schulte O, Holzapfel W B. Effect of Pressure on the Atomic Volume of Zn, Cd, and Hg up to 75 GPa [J]. Phys Rev B, 1996, 53: 569-580.
    Marsh S P. Los Alamos Shock Hugoniot Data [M]. Berkeley: University of California Press, 1979.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
    Mao H K, Bell P M, Shaner J W, et al. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
    Shapiro J N, Knopoff L. Reduction of Shock-Wave Equations of State to Isothermal Equations of State [J]. J Geophys Res, 1969, 74: 1435-1438.
    Hu J B, Jing F Q. A Simplified Analytical Method for Calculations of Equation-of-State of Materials from Shock Compression Data [J]. Chinese Journal of High Pressure Physics, 1990, 4(3): 175-186. (in Chinese)
    胡金彪, 经福谦. 用冲击压缩数据计算物质结合能的一个简便解析方法 [J]. 高压物理学报, 1990, 4(3): 175-186.
    Hixson R S, Fritz J N. Shock Compression of Tungsten and Molybdenum [J]. J Appl Phys, 1992, 71: 1721-1728.
    Wang Y, Ahuja R, Johansson B. Reduction of Shock-Wave Data with Mean-Field Potential Approach [J]. J Appl Phys, 2002, 92: 6616-6620.
    Anderson O L. The Grneisen Ratio for the Last 30 Years [J]. Geophys J Int, 2000, 143: 279-294.
    Cohen R E, Glseren O, Hemley R J. Accuracy of Equation-of-State Formulations [J]. American Mineralogist, 2000, 85: 338-344.
    Gray D E. American Institute of Physics Handbook(3rd ed) [M]. New York: McGraw-Hill, 1972.
    Taravillo M, Baonza V G, Nez J, et al. Simple Equation of State for Solids under Compression [J]. Phys Rev B, 1996, 54: 7034-7045.
    Touloukia Y S, Kirby R K, Taylor R E, et al. Thermophysical Properties of Matter, Vol 12, Thermal Expansion-Metallic Elements and Alloys (2nd ed) [M]. New York-Washington: IFI/Plenum, 1977.
    Rose J H, Smith J R, Guinea F, Ferrante J. Universal Features of the Equation of State of Metals [J]. Phys Rev B, 1984, 29: 2963-2969.
    Fiolhais C, Perdew J P, Armster S Q, et al. Dominant Density Parameters and Local Pseudopotentials for Simple Metals [J]. Phys Rev B, 1995, 51: 14001-14011.
    Alchagirov A B, Perdew J P, Boettger J C, et al. Energy and Pressure versus Volume: Equations of State Motivated by the Stabilized Jellium Model [J]. Phys Rev B, 2001, 63: 224115-1-224115-16.
    Wallace D C. Lattice Dynamical Calculation of Some Thermodynamic Properties for Aluminum [J]. Phys Rev B, 1970, 1: 3963-3966.
    Leisure R G, Hsu D K, Seiber B A. Elastic Properties of Tantalum over the Temperature Range 4~300 K [J]. J Appl Phys, 1973, 44: 3394-3397.
    Akimoto S, Manghnani M H. High-Pressure Research in Geophysics [M]. Tokyo: Center for Academic Publishing, 1982.
    Heinz D L, Jeanloz R. The Equation of State of the Gold Calibration Standard [J]. J Appl Phys, 1984, 55: 885-893.
    Anderson O L, Isaak D G, Yamamoto S. Anharmonicity and the Equation of State for Gold [J]. J Appl Phys, 1989, 65: 1534-1543.
    Holmes N C, Moriarty J A, Gathers G R, et al. The Equation of State of Platinum to 660 GPa (6. 6 Mbar) [J]. J Appl Phys, 1989, 66: 2962-2967.
    Kamm G N, Alers G A. Low-Temperature Elastic Moduli of Aluminum [J]. J Appl Phys, 1964, 35: 327-330.
    Sutton P M. The Variation of the Elastic Constants of Crystalline Aluminum with Temperature Between 63 K and 773 K [J]. Phys Rev, 1953, 91: 816-821.
    Boettger J C, Trickey S B. Total Energy and Pressure in the Gaussian-Orbitals Technique. II. Pressure-Include Crystallographic Phase Transition and Equilibrium Properties of Aluminum [J]. Phys Rev B, 1984, 29: 6434-6442.
    Vaks V G, Zarocentsev E V, Kravchuk S P, et al. Temperature Dependence of the Elastic Constants in Alkali Metals [J]. J Phys F, 1978, 8: 725-742.
    Christensen N E, Ruoff A L, Rodriguez C O. Pressure Strengthening: A Way to Multimegabar Static Pressures [J]. Phys Rev B, 1995, 52: 9121-9124.
    Ruoff A L, Rodriguez C O, Christensen N E. Elastic Moduli of Tungsten to 15 Mbar, Phase Transition at 6. 5 Mbar, and Rheology to 6 Mbar [J]. Phys Rev B, 1998, 58: 2998-3002.
    Boettger J C. Equation of State for Tantalum from Relativistic Linear Combinations of Gaussian-Type Orbitals Calculations [J]. Phys Rev B, 2001, 64: 035103-1-035103-5.
  • 加载中
计量
  • 文章访问数:  7661
  • HTML全文浏览量:  526
  • PDF下载量:  839
出版历程
  • 收稿日期:  2004-06-17
  • 修回日期:  2004-07-12
  • 发布日期:  2005-06-05

目录

    /

    返回文章
    返回