纳米铁酸锌的冲击波合成及它的光催化活性

刘建军 谭华 徐康 贺红亮

刘建军, 谭华, 徐康, 贺红亮. 纳米铁酸锌的冲击波合成及它的光催化活性[J]. 高压物理学报, 1997, 11(2): 90-97 . doi: 10.11858/gywlxb.1997.02.003
引用本文: 刘建军, 谭华, 徐康, 贺红亮. 纳米铁酸锌的冲击波合成及它的光催化活性[J]. 高压物理学报, 1997, 11(2): 90-97 . doi: 10.11858/gywlxb.1997.02.003
LIU Jian-Jun, TAN Hua, XU Kang, HE Hong-Liang. Shock Synthesis of Zinc Ferrite and Its Photocatalytic Activity in Dehydrogenation of H2S[J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 90-97 . doi: 10.11858/gywlxb.1997.02.003
Citation: LIU Jian-Jun, TAN Hua, XU Kang, HE Hong-Liang. Shock Synthesis of Zinc Ferrite and Its Photocatalytic Activity in Dehydrogenation of H2S[J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 90-97 . doi: 10.11858/gywlxb.1997.02.003

纳米铁酸锌的冲击波合成及它的光催化活性

doi: 10.11858/gywlxb.1997.02.003
详细信息
    通讯作者:

    刘建军

Shock Synthesis of Zinc Ferrite and Its Photocatalytic Activity in Dehydrogenation of H2S

More Information
    Corresponding author: LIU Jian-Jun
  • 摘要: 利用溶液共沉淀法制备了纳米氧化锌和三氧化二铁的非常均匀的混合物。通过常规的高温焙烧法和冲击波压缩方法分别合成了铁酸锌。这两种铁酸锌对硫化氢气体的光催化脱氢表现出显著不同的催化活性。试验表明:高温焙烧法合成的铁酸锌是一种颗粒度为几十纳米的结晶完整的化合物;而冲击波合成的铁酸锌是一种颗粒度为几个纳米的非化学计量比化合物,它的光催化活性随着冲击波合成压力的增高而迅速提高。在37 GPa时,冲击波合成的铁酸锌对H2S脱氢的光催化活性要比高温焙烧法制备的铁酸锌高出3倍以上。利用粉末X光衍射,透射电镜及电子衍射,Mossbauer谱等分析手段对这两种铁酸锌的晶格结构、细观特征及磁特性进行了表征。

     

  • Thadhani N N. Shock Induced Chemical Reactions and Synthesis of Materials. Progress in Materials Science, 1993, 37(2): 117-226.
    Batsanov S S. Effects of Explosions on Materials: Modification and Synthesis under High-Pressure Shock Compression. New York: Spring-Verlag, 1994.
    Sawaoka A B. Shock Waves in Materials Science. Tokyo: Spring-Verlag, 1993.
    Graham R A. Solids under High Pressure Shock Compressions: Mechanics, Physics and Chemistry. New York: Spring-Verlag, 1993.
    Trudov A F, Pisarev S P. Phase and Structural Changes during Shock-Thermal Treatment of Some Metallic and Ceramic Powders. In: Batsanov S S, ed. Proc. of the Third All-Union Symposium on Impulsive Pressures. Moscow, 1979.
    Martynova A A, Temnitskii I N, et al. Explosive Synthesis of Piezoceramic Materials. Inorganic Materials, 1975: 626-628.
    Temnitskii I N, Zaionts L R, et al. Mechanism of Formation PZT Piezoceramics during Shock Synthesis Extrusion of Materials with Sybsequent Calcination. In: Batsanov S S, ed. Proc of the Third All-Union Symposium on Impulsive Pressures. Moscow, 1979.
    Iqbal Z, Thadhami N N, et al. In: Meyer M A, Murr L E, Stundhammer K P, eds. Shock Wave and High Strain Rate Phenomena in Materials, Marcerl Dekker, 1991: 821-830.
    Schmidt S C, Johnson J N, Davison L W. Shock Compression in Condensed Matter-1989. Amsterdam: Elsevier Science Publishers B V, 1990.
    Kimura Y. Jpn J Appl Phys, 1963, 2: 312.
    Adadorov G, Novikov N N. Soviet Phys-Solid State, 1969, 11: 1601.
    Venturini E, Morosin B, Graham R A. J Appl Phys, 1985, 57: 3814.
    Graham R A, Morosin B, et al. In: Gupta Y M, ed. Shock Compression in Condensed Matter-1985. New York: Plenum Press, 1986: 693.
    Golden J, Graham R A, et al. In: Nellis W J, et al, eds. Shock Wave in Condensed Matter-1981, New York: American Institute of Physics, 1982.
    William F L, Morosin B, et al. In: Gupta Y M, ed. Shock Wave in Condensed Matter-1985. New York: Plenum Press, 1986: 791.
    Raupp G B, Delgass W N. J Catalyst, 1979, 58: 337.
  • 加载中
计量
  • 文章访问数:  7207
  • HTML全文浏览量:  371
  • PDF下载量:  646
出版历程
  • 收稿日期:  1996-10-16
  • 修回日期:  1997-02-14
  • 发布日期:  1997-06-05

目录

    /

    返回文章
    返回