碳水混合物冲击压缩特性的理论研究

刘福生 洪德贵 周雪芬

刘福生, 洪德贵, 周雪芬. 碳水混合物冲击压缩特性的理论研究[J]. 高压物理学报, 2001, 15(3): 186-192 . doi: 10.11858/gywlxb.2001.03.004
引用本文: 刘福生, 洪德贵, 周雪芬. 碳水混合物冲击压缩特性的理论研究[J]. 高压物理学报, 2001, 15(3): 186-192 . doi: 10.11858/gywlxb.2001.03.004
LIU Fu-Sheng, HONG De-Gui, ZHOU Xue-Fen. Theoretical Research on the Hugoniot Curves of the Mixtures of Carbon and Water[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 186-192 . doi: 10.11858/gywlxb.2001.03.004
Citation: LIU Fu-Sheng, HONG De-Gui, ZHOU Xue-Fen. Theoretical Research on the Hugoniot Curves of the Mixtures of Carbon and Water[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 186-192 . doi: 10.11858/gywlxb.2001.03.004

碳水混合物冲击压缩特性的理论研究

doi: 10.11858/gywlxb.2001.03.004
详细信息
    通讯作者:

    刘福生

Theoretical Research on the Hugoniot Curves of the Mixtures of Carbon and Water

More Information
    Corresponding author: LIU Fu-Sheng
  • 摘要: 采用固-液双相混合模型和分子流体的微扰变分统计理论,分别计算了石墨-水体系(0=1.233 g/cm3)和金刚石-水体系(0=1.238 g/cm3)的冲击压缩特性。结果表明:(1)在不发生石墨金刚石相变和化学反应的低压区域(p20 GPa),这两种混合体系的冲击压缩曲线的差别并不明显;(2)在发生石墨金刚石相变的高压区域(p20 GPa),这两种混合体系的冲击压缩曲线显著不同,且石墨-水体系更易压缩;(3)在45~60 GPa强冲击压力范围内,冲击波诱发的化学反应也不会显著影响这两种体系冲击压缩曲线的走势。上述结论与文献(高压物理学报,1999,13(2):87-92)发表的实验结果相矛盾。进一步分析了引起理论与实验结果不一致的可能原因,并对文献中的实验结果及其理论分析结论提出质疑。

     

  • Burnham C W. The Importance of Volatile Constituents [M]. Prienceton, New Jersey: Princeton University Press, 1979: 439-482.
    Yoder H S. Diopside-Anorthite-Water at Five and Ten kbar and Its Bearing on Explosive Volcanism [J]. Carnegie Institution of Washington Year Book, 1965, 56: 206-217.
    Kushiro I, Yoder H S, Nishikawa M. Effect of Water on the Melting of Enstatite [J]. Geological Society of America Bulletin, 1968, 79(12): 1685-1692.
    Watson E B. The Effect of Water on Cesium Diffusion in Molten Granite [J]. EOS, 1979, 60: 402.
    Schulze F, Behrens H, Holtz F, et al. The Influence of H2O on the Viscosity of a Haplogranitic Melt [J]. American Mineralogist, 1996, 81(10): 1155-1165.
    Dingwell D B. Melt Viscosities in the System NaAlSi3O8-H2O-F2O [J]. Geochemical Society Special Publication, 1987, 1: 423-433.
    Lange R A. The Effect of H2O, CO2 and F on the Density and Viscosity of Silicate Melts [J]. Reviews in Mineralogy, 1994, 30: 331-370.
    Silver J F, Ihinger P D, Stolper E M. The Influence of Bulk Composition on the Speciation of Water in Silicate Glasses [J]. Contributions to Mineralogy and Petrology, 1990, 104: 142-162.
    Romano C, Dingwell D B, Sterner S M. Kinetics of Quenching of Hydrous Feldspathic Melts: Quantification Using Synthetic Fluid Inclusion [J]. American Mineralogist, 1994, 79(11): 1125-1134.
    Burnham C W, Davis N F. The Role of H2O in Silicate Melts II: Thermodynamic and Phase Relations in the System NaAlSi3O8-H2O to 10 Kilobars, 700 ℃ to 1000 ℃ [J]. American Journal of Science, 1974, 274: 902-940.
    Burnham C W. Water and Magmas, a Mixing Model [J]. Geochimica et Cosmochimica Acta, 1975, 39(8): 1077-1084.
    Kohn S C, Dupree R, Smith M E. A Multinuclear Magnetic Resonance Study of the Structure of Hydrous Albite Glass [J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 2925-2935.
    Mcmillan P F. Water Solubility and Speciation Models [J]. Reviews in Mineralogy, 1994, 30: 131-156.
    Serfeit F A, My sen B 0, Virgo D. Structural Similarity between Glasses and Melts Relevant to Petrogical Processes [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1879-1884.
    Domine F, Piriou B. Study of Sodium Silicate Glasses and Melt by Infrared Reflectance Spectroscopy [J]. Journal of Non-Crystal Solids, 1983, 57: 125-130.
    Nowak M, Behrens H. The Speciation of Water in Haplogranitic Glasses and Melts Determined by in Situ-IR Spectroscopy [J]. Geochimica et Cosmochimica Acta, 1995, 59(16): 3445-3450.
    Shen A, Keppler H. Infrared Spectrocopy of Hydrous Silicate Melts to 1000 ℃ and 10 kbar: Direct Observation of H2O Speciation in a Diamond-Anvil Cell [J]. American Mineralogist, 1995, 80(12): 1335-1338.
    Zotov N, Keppler H. The Influence of Water on the Structure of Hydrous Sodium Tetrasilicate Glasses [J]. American Mineralogist, 1998, 83(8): 823-834.
    Keppler H, et al. High-Temperature FTIR Spectra of H20 in Rhyolite Melt to 1300 ℃ [J]. American Mineralogist, 1993, 78(12): 1324-1327.
    Grzechnik A, Mcmillan P. Temperature Dependence of the OH- Absorption in Si02 Glass and Melt to 1975 K [J]. American Mineralogist, 1998, 83(3): 331-338.
    Newman S, Stolper E M, Epstein S. Measurement of Water in Rhyolitic Glasses: Calibration of an Infrared Spectroscopic Technique [J]. American Minerologist, 1986, 71(12): 1527-1541.
    Kohn S C, Dupree R, Smith M E. Proton Environments and Hydrogen-Bonding in Hydrous Silicate Glasses from Proton NMR [J]. Nature, 1989, 337: 539-541.
    Kohn S C, Dupree R, Golam Mortuza M. The Interaction between Water and Aluminosilicate Magmas [J]. Chemical Geology, 1992, 96(3): 399-409.
    Kohn S C, Smith M E, Dirken P J, et al. Sodium Enviroments in Dry and Hydrous Albite Glasses: Improved 23Na Solid State NMR Data and Their Implications for Water Dissolution Mechanisms [J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 79-87.
    Urbain G, Bottinga Y, Richet P. Viscosity of Liquid Silica, Silicates and Alumino-Silicates [J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 1061-1072.
    Persikov E S, Zharikov V A, Bukhtiyarov P G, et al. The Effects of Volatiles on the Properties of Magmatic Melts [J]. European Journal of Mineralogy, 1990, 2(5): 621-642.
  • 加载中
计量
  • 文章访问数:  8145
  • HTML全文浏览量:  414
  • PDF下载量:  593
出版历程
  • 收稿日期:  2000-07-24
  • 修回日期:  2001-04-23
  • 发布日期:  2001-09-05

目录

    /

    返回文章
    返回