应用Monte Carlo方法模拟爆轰产物状态方程的研究进展

马义刚 李生才

引用本文:
Citation:

应用Monte Carlo方法模拟爆轰产物状态方程的研究进展

    通讯作者: 李生才

Review on the Simulation of Detonation Products Equation of State by Monte Carlo Method

    Corresponding author: LI Sheng-Cai
  • 摘要: 应用Monte Carlo方法模拟爆轰产物状态方程,区别于建立在球形分布分子势基础上的传统爆轰产物状态方程计算方法,从原子水平上直接模拟实际炸药的爆轰产物状态方程,克服了传统方法中混合产物状态方程不精确的缺点。综述了该方法的历史背景及发展现状。对模拟中宏观量的描述、统计平均的计算、势函数的选取及边界条件进行了详尽描述。
  • [1] Sun C W, Wei Y Z, Zhou Z K. Applied Detonation Physics [M]. Beijing: National Defence Industry Press, 2000. (in Chinese)
    [2] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
    [3] Mader C L. Numerical Modeling of Detonations [M]. California: University of California Press, 1979.
    [4] Wu X. Detonation Properties of Condensed Explosives Computed with the VLW Equation of State [A]. 8th International Symposium on Detonation [C]. Albuquerque, New Mexico, 1985.
    [5] Fickett W. Detonation Properties of Condensed Explosives Calculated with Equation of State on Intermolecular Potentials [R]. Los Alamos Scientific Laboratory Report, LA-2712, 1962.
    [6] Fickett W. Calculation of the Detonation Properties of Condensed Explosives [J]. Phys Fluid, 1963, 6(7): 997.
    [7] Chirat R, Pittion-Rossillon G. Detonation Properties of Condensed Explosives Calculation with an Equation of State Based on Intermolecular Potentials [A]. 7th International Symposium on Detonation [C]. Annapolis, Maryland, 1981.
    [8] Baute J, Chirat R. Which Equation of State for Carbon in Detonation Products [A]. 8th International Symposium on Detonation [C]. Albuquerque, New Mexico, 1985.
    [9] Shaw M S. Monte Carlo Simulation of Equilibrium Chemical Composition of Molecular Fluid Mixtures in the NatomspT Ensemble [J]. J Chem Phys, 1991, 94(11): 7550-7553.
    [10] Charlet F, Turkel M L, Danel J F, et al. Evaluation of Various Theoretical Equations of State Used in Calculation of Detonation Properties [J]. J Appl Phys, 1998, 84(8): 4227-4238.
    [11] Shaw M S. Direct Monte Carlo Simulation of the Chemical Equilibrium Composition of Detonation Products [A]. 10th International Detonation Symposium [C]. Boston, Massachusetts, 1993.
    [12] Shaw M S. Direct Simulation of Detonation Products Equation of State by a Composite Monte Carlo Method [A]. 12th International Detonation Symposium [C]. San Diego, California, 2002.
    [13] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of State Calculations by Fast Computing Machines [J]. J Chem Phys, 1953, 21(6): 1087-1092.
    [14] Wood W W. Monte Carlo Calculations for Hard Disks in the Isothermal-Isobaric Ensemble [J]. J Chem Phys, 1968, 48(1): 415-434.
    [15] McDonald I R. NpT-Ensemble Monte Carlo Calculations for Binary Liquid Mixtures [J]. Mol Phys, 1972, 23: 41-58.
    [16] Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications [M]. Translated by Wang W C. Beijing: Chemical Industry Press, 2002. (in Chinese)
    [17] Frenkel D, Smit B. 分子模拟--从算法到应用 [M]. 汪文川译. 北京: 化学工业出版社, 2002.
    [18] Coker D F, Watts R O. Chemical Equilibria in Mixtures of Bromine and Chlorine [J]. Mol Phys, 1981, 44: 1303.
    [19] Kofke D A, Glandt E D. Monte Carlo Simulation of Multicomponent Equilibria in a Semigrand Canonical Ensemble [J]. Mol Phys, 1988, 64(6): 1105-1131.
    [20] Sindzingre P, Ciccotti G, Massobrio C, et al. Partial Enthalpies and Related Quantities in Mixtures from Computer Simulation [J]. Chem Phys Lett, 1987, 136: 35.
    [21] Sindzingre P, Massobrio C, Ciccotti G, et al. Calculation of Partial Enthalpies of an Argon-Krypton Mixture by NpT Molecular Dynamics [J]. Chem Phys, 1989, 129(2): 213-224.
    [22] Widom B. Some Topics in the Theory of Fluids [J]. J Chem Phys, 1963, 39(11): 2808-2812.
    [23] Widom B. Potential-Distribution Theory and the Statistical Mechanics of Fluids [J]. J Phys Chem, 1982, 86(6): 869-872.
    [24] Panagiatopoulos A Z. Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble [J]. Mol Phys, 1987, 61(4): 813-826.
    [25] Panagiatopoulos A Z, Quirke N, Stapleton M, et al. Phase Equilibria by Simulation in the Gibbs Ensemble [J]. Mol Phys, 1988, 63(4): 527-545.
    [26] Panagiatopoulos A Z. Direct Determination of Fluid Phase Equilibria by Simulation in the Gibbs Ensemble: A Review [J]. Mol Simulat, 1992, 9: 1-23.
    [27] Zhang X H, Yun Z H. Explosion Chemistry [M]. Beijing: Defence Industry Press, 2000. (in Chinese)
    [28] 张煦和, 云主惠. 爆炸化学 [M]. 北京: 国防工业出版社, 1989.
    [29] Xu X S, Zhang W X. Introduction to Theory of Applied Equations of State [M]. Beijing: Science Press, 1986. (in Chinese)
    [30] 徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986.
    [31] Ferguson D M, Siepmann J I, Truhlar D G. Monte Carlo Methods in Chemical Physics [M]. New York: Wiley J, 1999.
    [32] Li R S. Equilibrium and Non-Equilibrium Statistical Mechanics [M]. Beijing: Tsinghua University Press, 1994. (in Chinese)
    [33] 李如生. 平衡和非平衡统计力学 [M]. 北京: 清华大学出版社, 1994.
    [34] Shaw M S. A Theoretical Equation of State for Detonation Products [A]. 11th International Detonation Symposium [C]. Snowmass, Colorado, 1998.
    [35] Ree F H. A Statistical Mechanical Theory of Chemically Reacting Multiphase Mixtures: Application to the Detonation Properties of PETN [J]. J Chem Phys, 1984, 81(3): 1251-1263.
  • [1] 赵艳红刘海风张弓木 . PETN炸药爆轰产物状态方程的理论研究. 高压物理学报, 2009, 23(2): 143-149 . doi: 10.11858/gywlxb.2009.02.011
    [2] 赵铮陶钢杜长星 . 爆轰产物JWL状态方程应用研究. 高压物理学报, 2009, 23(4): 277-282 . doi: 10.11858/gywlxb.2009.04.007
    [3] 赵艳红段素青刘海风张弓木 . RDX炸药爆轰产物物态方程. 高压物理学报, 2015, 29(1): 47-51. doi: 10.11858/gywlxb.2015.01.008
    [4] 刘海风陈栋泉张世泽 . 爆轰产物物态方程及CHBr3相变的理论研究. 高压物理学报, 1996, 10(4): 284-290 . doi: 10.11858/gywlxb.1996.04.008
    [5] 孙悦孟川民吴国栋杨向东 . 液氮与液态一氧化碳混合物的冲击压缩特性研究. 高压物理学报, 2002, 16(3): 217-223 . doi: 10.11858/gywlxb.2002.03.010
    [6] 黄秀光顾援 . 激光驱动高压状态方程实验中的绝对测量方法. 高压物理学报, 2000, 14(1): 75-80 . doi: 10.11858/gywlxb.2000.01.013
    [7] 罗艾民张奇 . 战斗部爆轰产物温度效应数值模拟. 高压物理学报, 2006, 20(1): 45-50 . doi: 10.11858/gywlxb.2006.01.010
    [8] 李大红 . 凝聚炸药中超压爆轰的实验研究. 高压物理学报, 1987, 1(1): 81-87 . doi: 10.11858/gywlxb.1987.01.011
    [9] 龙新平何碧蒋小华吴雄 . 论VLW状态方程. 高压物理学报, 2003, 17(4): 247-254 . doi: 10.11858/gywlxb.2003.04.002
    [10] 邹勇陈立溁 . 贵金属金的状态方程. 高压物理学报, 2006, 20(3): 308-312 . doi: 10.11858/gywlxb.2006.03.015
    [11] 赵锋 . 两种状态方程参数的计算. 高压物理学报, 2014, 28(5): 533-538. doi: 10.11858/gywlxb.2014.05.004
    [12] 施研博赵艳红刘海风孟续军王学容 . 多组元混合物状态方程. 高压物理学报, 2016, 30(6): 453-456. doi: 10.11858/gywlxb.2016.06.003
    [13] 李明李立新杨伍明张培峰高春晓贺春元郝爱民李延春李晓东刘景 . 高温高压下硬水铝石状态方程研究. 高压物理学报, 2008, 22(3): 333-336 . doi: 10.11858/gywlxb.2008.03.020
    [14] 曹贵桐於玉华吴杉楠渠永德 . 高压下发射药燃气的状态方程. 高压物理学报, 1988, 2(3): 227-236 . doi: 10.11858/gywlxb.1988.03.005
    [15] 蒋玺周文戈刘永刚谢鸿森张欢刘景马麦宁李晓东李延春 . 室温高压下天然锡石状态方程研究. 高压物理学报, 2005, 19(3): 225-229 . doi: 10.11858/gywlxb.2005.03.006
    [16] 柳雷李晓东李延春唐玲云刘景毕延 . NiO的高压结构和等温状态方程研究. 高压物理学报, 2009, 23(3): 209-214 . doi: 10.11858/gywlxb.2009.03.008
    [17] 陈俊祥耿华运 . 多孔材料温压状态方程计算简要评述. 高压物理学报, 2019, 33(3): 030111-1-030111-9. doi: 10.11858/gywlxb.20190767
    [18] 龚自正ANDERSONW W W毕延经福谦霍卉谭华 . 水绿矾的状态方程和高压熔化. 高压物理学报, 2000, 14(1): 62-69 . doi: 10.11858/gywlxb.2000.01.011
    [19] 严祖同 . 高压下碱卤晶体的状态方程. 高压物理学报, 1995, 9(3): 234-240 . doi: 10.11858/gywlxb.1995.03.013
    [20] 徐济安 . 一个等温状态方程(Ⅴ)不同温度的高压状态方程. 高压物理学报, 1988, 2(3): 211-217 . doi: 10.11858/gywlxb.1988.03.003
  • 加载中
计量
  • 文章访问数:  1400
  • 阅读全文浏览量:  9
  • PDF下载量:  840
出版历程
  • 收稿日期:  2004-02-09
  • 录用日期:  2004-07-17
  • 刊出日期:  2005-09-05

应用Monte Carlo方法模拟爆轰产物状态方程的研究进展

    通讯作者: 李生才
  • 1. 北京理工大学爆炸科学与技术国家重点实验室,北京 100081;
  • 2. 防化指挥工程学院化学防护系,北京 102205

摘要: 应用Monte Carlo方法模拟爆轰产物状态方程,区别于建立在球形分布分子势基础上的传统爆轰产物状态方程计算方法,从原子水平上直接模拟实际炸药的爆轰产物状态方程,克服了传统方法中混合产物状态方程不精确的缺点。综述了该方法的历史背景及发展现状。对模拟中宏观量的描述、统计平均的计算、势函数的选取及边界条件进行了详尽描述。

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回