固氩高压物态方程和弹性性质的密度泛函理论计算

孟川民 姬广富 黄海军

孟川民, 姬广富, 黄海军. 固氩高压物态方程和弹性性质的密度泛函理论计算[J]. 高压物理学报, 2005, 19(4): 353-356 . doi: 10.11858/gywlxb.2005.04.012
引用本文: 孟川民, 姬广富, 黄海军. 固氩高压物态方程和弹性性质的密度泛函理论计算[J]. 高压物理学报, 2005, 19(4): 353-356 . doi: 10.11858/gywlxb.2005.04.012
MENG Chuan-Min, JI Guang-Fu, HUANG Hai-Jun. Density-Functional Calculation of the EOS and Adiabatic Elastic Properties for Solid Argon[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 353-356 . doi: 10.11858/gywlxb.2005.04.012
Citation: MENG Chuan-Min, JI Guang-Fu, HUANG Hai-Jun. Density-Functional Calculation of the EOS and Adiabatic Elastic Properties for Solid Argon[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 353-356 . doi: 10.11858/gywlxb.2005.04.012

固氩高压物态方程和弹性性质的密度泛函理论计算

doi: 10.11858/gywlxb.2005.04.012
详细信息
    通讯作者:

    孟川民

Density-Functional Calculation of the EOS and Adiabatic Elastic Properties for Solid Argon

More Information
    Corresponding author: MENG Chuan-Min
  • 摘要: 用平面波赝势方法结合局域密度近似密度泛函理论(DFT-LDA)计算了零温下固态氩晶体在压力0~82 GPa的p-V关系和弹性性质,计算结果与静高压实验数据符合较好,计算结果表明局域密度近似方法能较好地描述固氩晶体高压下的性质,采取合理的方法和计算参数,惰性气体固态晶体高压下的力学性质可以比较准确地计算出来,这可为一些还不能通过实验进行研究的物态分析提供借鉴。

     

  • Kelly A. Strong Solids (3rd ed) [M]. Oxford: Oxford University Press, 1986.
    Roundy D, Krenn C R, Cohen M L, et al. Ideal Shear Strengths of fcc Aluminum and Copper [J]. Phys Rev Lett, 1999, 82: 2713-2716.
    Xu W, Moriarty J A. First Principles Force Field for Metallic Tantalum [J]. Phys Rev, 1996, B54: 6941-6951.
    Ogata S, Li J, Yip S. Ideal Pure Shear Strength of Aluminum and Copper [J]. Science, 2002, 298: 807-811.
    Li W X, Wng T C. Ab Initio Investigation of the Elasticity and Stability of Aluminum [J]. J Phys: Condens Matter, 1998, 10: 9889-9904.
    Sin'ko G V, Smirnov N A. Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure [J]. J Phys: Condens Matter, 2002, 14: 6989-7005.
    McMahan A K, Moriarty J A. Structural Phase Stability in Third-Period Simple Metals [J]. Phys Rev B, 1983, 27: 3235-3251.
    Sin'ho G V, Smirnov N A. Ab Initio Calculations of the Equation of State and Elastic Constants of Aluminum in the Region of Negative Pressures [J]. JETP Letters, 2002, 75: 184-186.
    Klein M L, Venables J A. Rare Gas Solids [M]. London: Academic Press, 1976.
    Gewurtz S, Stoicheff B P. Elastic Constants of Argon Single Crystals Determined by Brillouin Scattering [J]. Phys Rev B, 1974, 3478-3499.
    Grimsditch M, Loubeyer P, Polian A. Brillouin Scattering and Three-Body Forces in Argon at High Pressures [J]. Phys Rev B, 1986, 33: 7192-7200.
    Hiroyasu Shimizu, Hideyuki Tashiro, Tetsji Kume, et al. High-Pressure Elastic Properties of Solid Argon to 70 GPa [J]. Phys Rev Lett, 2001, 86: 4568-4571.
    Litaka T, Ebisuzaki T. First-Principles of Elastic Properties of Solid Argon at High Pressure [J]. RIKEN Review, 2000, 48: 12-15.
    Xu J, Mao H K, Bell P M. Position-Sensitive X-Ray Diffraction: Hydrostatic Compressibility of Argon, Tantalum, and Copper to 769 kbar [J]. High Tem-High Press, 1984, 16: 495-499.
    Finger L W, Hazen R M, Zuo G, et al. Structure and Comprssion of Crystalline Argon and Neon at High Pressure and Room Temperature [J]. Appl Phys Lett, 1981, 39: 892-894.
    Ross M, Mao H K, Bell P M, et al. The Equation of State of Dense Argon: A Comparison of Shock and Static Studies [J]. J Chem Phys, 1986, 85: 1028-1033.
    Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev A, 1965, 140: 1133-1138.
  • 加载中
计量
  • 文章访问数:  7808
  • HTML全文浏览量:  309
  • PDF下载量:  778
出版历程
  • 收稿日期:  2004-06-24
  • 修回日期:  2004-11-17
  • 发布日期:  2005-12-05

目录

    /

    返回文章
    返回