钙钛矿(GaTiO3)高压相变及等温压缩

熊大和 B. C. Ming M. H. Manghnani

熊大和, B. C. Ming, M. H. Manghnani. 钙钛矿(GaTiO3)高压相变及等温压缩[J]. 高压物理学报, 1988, 2(1): 1-9 . doi: 10.11858/gywlxb.1988.01.001
引用本文: 熊大和, B. C. Ming, M. H. Manghnani. 钙钛矿(GaTiO3)高压相变及等温压缩[J]. 高压物理学报, 1988, 2(1): 1-9 . doi: 10.11858/gywlxb.1988.01.001
XIONG Da-He, B. C. Ming, M. H. Manghnani. High-Pressure Phase Transition and Constant-Temperature Compression of Caiclum Titanate Ore[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 1-9 . doi: 10.11858/gywlxb.1988.01.001
Citation: XIONG Da-He, B. C. Ming, M. H. Manghnani. High-Pressure Phase Transition and Constant-Temperature Compression of Caiclum Titanate Ore[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 1-9 . doi: 10.11858/gywlxb.1988.01.001

钙钛矿(GaTiO3)高压相变及等温压缩

doi: 10.11858/gywlxb.1988.01.001
详细信息
    通讯作者:

    熊大和

High-Pressure Phase Transition and Constant-Temperature Compression of Caiclum Titanate Ore

More Information
    Corresponding author: XIONG Da-He
  • 摘要: 高温高压条件下对钙钛矿(Perovstsite)多晶进行了研究,在金刚石压砧设备上压力条件最高达38 GPa,YAG莱塞加热温度近1 000 ℃以上,用红宝石荧光校压系统进行压力标定。实验结果表明静水压条件X射线就位测量,GaTiO3(Ⅰ)由斜方晶系在10 GPa时直接向六方GaTiO3(Ⅱ)结构相变,体积变化为1.6%;1 000 ℃加热及其非静水压条件下GaTiO3(Ⅰ)由斜方晶系首先转变为四方晶系GaTiO3(Ⅲ)转变压力为8.5 GPa,体积变化为0%,继续增加压力导15 GPa,GaTiO3(Ⅲ)向GaTiO3(Ⅱ')转化成六方晶系,体积变化亦为1.6%。三种高压相,在压力降到一个大气压时都会消失,所以是逆转化的非淬火相。等温压缩在标准静水压条件下进行,压力应小于10.4 GPa,K0'=5.6时,K0=(2107)GPa,此数据是根据Birch-Murnaghan状态方程求得的体模量。

     

  • Liu L G. Earth Planetary Science Letters, 1976, 31: 200; Liu L G. Geophys Res Lett, 1974, 1(6): 277.
    Yagi T, Bell P M, Mao H G. Carnegie Inst. of Washingion Yearbook, 1979, 78: 614.
    Jeanloz R, Thompson A B. Rev Geophys Space Phys, 1983, 21: 51.
    Mao H K, Bell P M, Yagi Y. Iron-Magnesium Fractionation Model for the Earth, in High Pressure Research in Geophysics. Edited by S Akimoto and M H Manghnani, 1982: 319.
    Ito E, Takahashi E, Matsui Y. Earth Planet Science Lett, 1984, 67: 238.
    Glazer A M. Acta Crystal B, 1972, 28: 3384.
    Magaw H D. Crystal Structure: A Working Approach, Saunders Philadelphia, 1973.
    Yagi T, Mao H G, Bell P M. Phys Chem Minerals, 1978, 3: 97.
    Kay H F, Bailey P C. Acta Cryst, 1957, 10: 219.
    Naylor B F, Cook O A. J Am Chem Soc, 1946, 68: 1003.
    Licbermann R C, Jones L E A, Ringwood A E. Phys Earth and Planet Int, 1977, 14: 165.
    Sasaki S, Prewitt C T, Bass J D. Orthorhombic Perovskite CaTiO, and CaTiO, Crystal Structure and Space Group, a Preprint Submitted to Acta Crystal C,1985.
    Bassett W A, Takahashi T, Stook P. Rev Sci Instrum, 1967, 38: 37.
    Ming L C, Manghnani M H. J Appl Phys, 1978, 49(1): 28.
    O'Keeffe M, Hyde B G, Bovin J O. Phys Chem Minerals, 1979, 4: 299.
    Sasaki S, Prewitt C T, Liebermann R C. Am Mineral, 1983, 68: 1189.
    Beattie A G, Samara G A. J Appl Phys, 1971, 12(6): 2376.
    Bass J D. Phys Earth Planet Interiors, 1984, 36: 145.
    Johnson L R. Bull Seismol Soc Amer, 1969, 59: 973.
    Butler R, Anderson D l. Phys Earih Planet Interiors, 1978, 17: 147.
    Cleary J R, Anderson R S. Seismology and the Internal Structure of the Earth, in: The Earth, Its Origin Sttucture and Evolution. Edited by M W McEihinny. London: Acad Press, 1979: 137.
  • 加载中
计量
  • 文章访问数:  7982
  • HTML全文浏览量:  405
  • PDF下载量:  661
出版历程
  • 收稿日期:  1986-08-08
  • 修回日期:  1986-08-08
  • 发布日期:  1988-03-05

目录

    /

    返回文章
    返回