一维碳纳米材料的高压结构相变

姚明光 杜明润 朱陆尧 刘冰冰

引用本文:
Citation:

一维碳纳米材料的高压结构相变

    通讯作者: 刘冰冰, liubb@jlu.edu.cn

High Pressure Induced Transformations in One-Dimensional Carbon Nanomaterials

    Corresponding author: LIU Bing-Bing, liubb@jlu.edu.cn
  • 摘要: 研究一维碳纳米材料高压结构的转变,能够加深对碳纳米材料新特性的认识,对制备一维超硬碳纳米材料具有重要意义。介绍了本研究组近年来在一维碳纳米材料方面开展的相关研究,包括富勒烯纳米管/棒、单壁碳纳米管,以及富勒烯填充碳纳米管形成的C60填充单壁碳纳米管(Peapod)结构,在高压下的结构稳定性、结构相变、压致键合变化等;揭示了纳米尺寸效应和一维限域效应对富勒烯高压结构相变的影响;揭示了碳纳米管在高压下的结构相变过程,并给出了其发生管内和管-管间聚合成键的实验依据。
  • [1] Sundqvist B. Fullerenes under high pressures [J]. Adv Phys, 1999, 48(1): 1-134.
    [2] Burgos E, Halac E, Weht R, et al. New superhard phases for three-dimensional C60-based Fullerites [J]. Phys Rev Lett, 2000, 85(11): 2328.
    [3] Hu M, Zhao Z S, Tian F, et al. Compressed carbon nanotubes: A family of new multifunctional carbon allotropes [J/OL]. Scientific Reports, 013, 3: 1331. http: //www. nature. com/srep/2013/130225/srep01331/pdf/srep01331. pdf.
    [4] Wang L, Liu B, Liu D, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller [J]. Adv Mater, 2006, 18(14): 1883-1888.
    [5] Wang L, Liu B B, Yu S D, et al. Highly enhanced luminescence from single-crystalline C601m-xylene nanorods [J]. Chem Mater, 2006, 18(17): 4190-4194.
    [6] Yao M G, Fan X H, Liu D D, et al. Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence [J]. Carbon, 2012, 50(1): 209-215.
    [7] Yao M G, Du M R, Liu B B. Controllable synthesis of fullerene nano/microcrystals and their structural transformation induced by high pressure [J]. Chinese Phys B, 2013, 22(9): 098109.
    [8] Lu S C, Yao M G, Yang X G, et al. High pressure transformation of graphene nanoplates: A Raman study [J]. Chem Phys Lett, 2013, 585: 101-106.
    [9] Wang L, Liu B B, Liu D D, et al. Synthesis and high pressure induced amorphization of C60 nanosheets [J]. Appl Phys Lett, 2007, 91(10): 103112.
    [10] Liu D D, Yao M M, Li Q J, et al. In situ Raman and photoluminescence study on pressure-induced phase transition in C60 nanotubes [J]. J Raman Spectrosc, 2012, 43(6): 737-740.
    [11] Liu D D, Yao M G, Wang L, et al. Pressure-induced phase transitions of C70 nanotubes [J]. J Phys Chem C, 2011, 115(18): 8918-8922.
    [12] Hou Y Y, Liu B B, Ma H A, et al. Pressure-induced polymerization of nano-and submicrometer C60 rods into a rhombohedral phase [J]. Chem Phys Lett, 2006, 423(1): 215-219.
    [13] Yao M G, Wang Z G, Liu B B, et al. Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure [J]. Phys Rev B, 2008, 78(20): 205411.
    [14] Zou Y G, Liu B B, Yao M G, et al. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure [J]. Phys Rev B, 2007, 76(19): 195417.
    [15] Zou Y G, Liu B B, Wang L C, et al. Rotational dynamics of confined C60 from near-infrared Raman studies under high pressure [J]. PNAS, 2009, 106(52): 22135-22138.
    [16] Zou Y G, Liu B B, Yao M G, et al. Effective polymerization of C60 in SWNTs under high pressure and simultaneous UV light irradiation [J]. Acta Physica Sinica, 2007, 56(9): 5172-5175. (in Chinese)
    [17] 邹永刚, 刘冰冰, 姚明光, 等. 紫外激光和压力共同作用下C60-peapod的聚合相变研究 [J]. 物理学报, 2007, 56(9): 5172-5175.
    [18] Yao M G, Lu S C, Xiao J P, et al. Probing factors affecting the Raman modes and structural collapse of single-walled carbon nanotubes under pressure [J]. Phys Status Solid (b), 2013, 250(7): 1370-1375.
    [19] Lu S C, Yao M G, Li Q J, et al. Exploring the possible interlinked structures in single-wall carbon nanotubes under pressure by Raman spectroscopy [J]. J Raman Spectrosc, 2013, 44(2): 176-182.
    [20] Pintschovius L, Blaschko O, Krexner G, et al. Bulk modulus of C60 studied by single-crystal neutron diffraction [J]. Phys Rev B, 1999, 59(16): 11020-11026.
    [21] Ludwig H A, Fietz W H, Hornung F W, et al. C60 under pressure-Bulk modulus and equation of state [J]. Z Phys B (Conden Matt), 1994, 96(2): 179-183.
    [22] Wang Y, Tomanek D, Bertsch G F. Stiffness of a solid composed of C60 clusters [J]. Phys Rev B, 1991, 44(12): 6562-6565.
    [23] Li X P, Lu J P, Martin R M. Ground-state structural and dynamical properties of solid C60 from an empirical intermolecular potential [J]. Phys Rev B, 1992, 46(7): 4301-4303.
    [24] Wasa S, Suito K, Kobayashi M, et al. Pressure-induced irreversible amorphization of C70 fullerene [J]. Solid State Commun, 2000, 114(4): 209-213.
    [25] Araujo P T, Barbosa Neto N M, Chacham H, et al. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes [J]. Nano Lett, 2012, 12(8): 4110-4116.
    [26] San-Miguel A, Cailler C, Machon D, et al. Carbon nanotubes under high pressure probed by resonance Raman scattering [C]//Boldyreva E, Dera P. High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer Science, 2010: 435-446.
    [27] Liu Z F, Zhang J, Gao B. Raman spectroscopy of strained single-walled carbon nanotubes [J]. Chem Commun, 2009(45): 6902-6918.
    [28] Schindler T L, Vohra Y K. A micro-Raman investigation of high-pressure quenched graphite [J]. J Phys: Condens Matter, 1995, 7(47): L637.
    [29] Kis A, Csnyi G, Salvetat J -P, et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging [J]. Nature Mater, 2004, 3: 153-157.
    [30] Kawasaki S, Hara T, Yokomae T, et al. Pressure-polymerization of C60 molecules in a carbon nanotube [J]. Chem Phys Lett, 2006, 418: 260-263.
  • [1] 曹立民张明张湘义高春晓周镇华张君戴道阳孙力玲王文魁 . 高温高压下碳纳米管的相转变及金刚石的合成. 高压物理学报, 2000, 14(1): 33-36 . doi: 10.11858/gywlxb.2000.01.006
    [2] 陈良辰王莉君唐东升解思深靳常青 . 高压下碳纳米管的X射线衍射研究. 高压物理学报, 2001, 15(1): 1-4 . doi: 10.11858/gywlxb.2001.01.001
    [3] 鲍忠兴成会明白朔李峰候鹏翔柳翠霞 . 碳纳米管在高压下的电学性质与状态方程. 高压物理学报, 2002, 16(1): 42-45 . doi: 10.11858/gywlxb.2002.01.007
    [4] 赵铁军闫鸿浩李晓杰王洋 . 多壁碳纳米管的爆轰改性. 高压物理学报, 2017, 31(4): 403-408. doi: 10.11858/gywlxb.2017.04.008
    [5] 杨瑞李晓杰闫鸿浩孔令杰 . 二茂铁质量对气相爆轰法合成碳纳米管的影响. 高压物理学报, 2017, 31(4): 389-395. doi: 10.11858/gywlxb.2017.04.006
    [6] 张明贺端威张湘义许应凡王文魁梁吉魏炳庆吴德海 . 5.5 GPa下碳纳米管的热稳定性研究. 高压物理学报, 1998, 12(1): 17-21 . doi: 10.11858/gywlxb.1998.01.003
    [7] 戴兰宏凌中白以龙 . 颗粒增强金属基复合材料变形强化中的应变梯度效应. 高压物理学报, 2001, 15(1): 5-11 . doi: 10.11858/gywlxb.2001.01.002
    [8] 陈喜平房雷鸣孙光爱彭放陈波贺端威刘景 . 钨酸锆制备与高压下的相变研究. 高压物理学报, 2015, 29(1): 59-62. doi: 10.11858/gywlxb.2015.01.010
    [9] 金弼朱宰万 . 高压下的Ge和Si的相变. 高压物理学报, 1987, 1(1): 39-49 . doi: 10.11858/gywlxb.1987.01.006
    [10] 熊大和 . 氧化镍(绿镍矿)等温压缩及高压相变研究. 高压物理学报, 1991, 5(3): 169-176 . doi: 10.11858/gywlxb.1991.03.002
    [11] 刘晓旸赵旭东侯为民苏文辉 . 高温高压条件下三氧化二硼相变过程的研究. 高压物理学报, 1995, 9(3): 213-217 . doi: 10.11858/gywlxb.1995.03.009
    [12] 洪时明 . 高压相变与时间的关系. 高压物理学报, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002
    [13] 顾惠成陈良辰鲍忠兴李凤英 . Pb0.8Sn0.2Te晶体高压相变的X射线衍射研究. 高压物理学报, 1996, 10(3): 227-230 . doi: 10.11858/gywlxb.1996.03.010
    [14] 黄海军蔡灵仓田旭 . 在200 GPa冲击压强下铁是否会发生固-固相变?. 高压物理学报, 2007, 21(2): 205-209 . doi: 10.11858/gywlxb.2007.02.015
    [15] 周志伟王志华赵隆茂树学峰 . 复合应力下泡沫铝屈服行为实验研究. 高压物理学报, 2012, 26(2): 171-176. doi: 10.11858/gywlxb.2012.02.008
    [16] 刘海峰韩莉 . 二维骨料随机分布混凝土的动态力学性能数值模拟. 高压物理学报, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003
    [17] 崔启良涂宝招潘跃武王成新高春晓张剑刘景邹广田 . 氧化镓的同步辐射研究. 高压物理学报, 2002, 16(2): 81-84 . doi: 10.11858/gywlxb.2002.02.001
    [18] 翁克难 . 铝硅酸盐钙钛矿的晶格参数. 高压物理学报, 1987, 1(2): 102-109 . doi: 10.11858/gywlxb.1987.02.002
    [19] 王彪郑友进贾晓鹏马红安张学全 . 高压下尼龙1010-单壁碳纳米管复合材料的结晶行为. 高压物理学报, 2012, 26(1): 33-40. doi: 10.11858/gywlxb.2012.01.005
    [20] 张宏广梁吉魏秉庆高志栋张继红刘丽芳赵刚 . 高温高压条件下富勒碳的相变. 高压物理学报, 1995, 9(4): 296-301 . doi: 10.11858/gywlxb.1995.04.009
  • 加载中
计量
  • 文章访问数:  879
  • 阅读全文浏览量:  18
  • PDF下载量:  300
出版历程
  • 收稿日期:  2013-11-20
  • 录用日期:  2013-12-05
  • 刊出日期:  2013-12-15

一维碳纳米材料的高压结构相变

    通讯作者: 刘冰冰, liubb@jlu.edu.cn
  • 1. 吉林大学超硬材料国家重点实验室,吉林长春 130012

摘要: 研究一维碳纳米材料高压结构的转变,能够加深对碳纳米材料新特性的认识,对制备一维超硬碳纳米材料具有重要意义。介绍了本研究组近年来在一维碳纳米材料方面开展的相关研究,包括富勒烯纳米管/棒、单壁碳纳米管,以及富勒烯填充碳纳米管形成的C60填充单壁碳纳米管(Peapod)结构,在高压下的结构稳定性、结构相变、压致键合变化等;揭示了纳米尺寸效应和一维限域效应对富勒烯高压结构相变的影响;揭示了碳纳米管在高压下的结构相变过程,并给出了其发生管内和管-管间聚合成键的实验依据。

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回