典型双原子分子晶体的高压解离和单原子相

李全 马琰铭

引用本文:
Citation:

典型双原子分子晶体的高压解离和单原子相

    通讯作者: 马琰铭, mym@jlu.edu.cn

High Pressure Dissociation of Typical Diatomic Molecular Solids and Their Atomic Phases

    Corresponding author: MA Yan-Ming, mym@jlu.edu.cn
  • 摘要: 高压可以有效地改变材料内部原子间的相互作用(如电子轨道重叠、化学成键、电荷分布等),进而改变材料的晶体结构、力学、热学、光学、电学等宏观物理性质。一百多年来,实验压力极限和高压理论方法的不断突破推动着高压学科的快速发展。在高压科学中,典型非极性双原子分子晶体的高压解离研究无疑是挑战高压极限的热点问题,也是20世纪高压物理重点解决的关键问题。针对元素周期表中质量最轻的H2、O2和N2 3种典型双原子共价非极性分子晶体的高压解离行为进行讨论,具体分析了解离产生的物理机制,评述了分子解离后形成的单原子相。
  • [1] Ashcroft N W. Metallic hydrogen: A high-temperature superconductor [J]. Phys Rev Lett, 1968, 21(26): 1748-1749.
    [2] Zhang L J, Niu Y L, Cui T, et al. The broken-symmetry phase of solid hydrogen: Evidence from infrared and Raman active vibrons [J]. J Phys: Condensed Matter, 2007, 19(42): 425237.
    [3] Pickard C J, Needs R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473-476.
    [4] Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys Rev B, 2010, 82(9): 094116.
    [5] Wang Y, Lv J, Zhu L, et al. CALYPSO: A method for crystal structure prediction [J]. Comput Phys Commun, 2012, 183(10): 2063-2070.
    [6] Lv J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium [J]. Phys Rev Lett, 2011, 106(1): 015503.
    [7] Li Q, Zhou D, Zheng W, et al. Global structural optimization of tungsten borides [J]. Phys Rev Lett, 2013, 110(13): 136403.
    [8] Wang X, Wang Y, Miao M, et al. Cagelike diamondoid nitrogen at high pressures [J]. Phys Rev Lett, 2012, 109(17): 175502.
    [9] Wang Y, Liu H, Lv J, et al. High pressure partially ionic phase of water ice [J]. Nature Communications, 2011, 2(12): 563.
    [10] Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure [J]. Phys Rev Lett, 2011, 106(14): 145501.
    [11] Zhu L, Wang Z, Wang Y, et al. Spiral chain O4 form of dense oxygen [J]. PNAS, 2012, 109(3): 751-753.
    [12] Li P, Gao G, Wang Y, et al. Crystal structures and exotic behavior of magnesium under pressure [J]. J Phys Chem C, 2010, 114(49): 21745.
    [13] Liu H, Wang H, Ma Y. Quasi-molecular and atomic phases of dense solid hydrogen [J]. J Phys Chem C, 2012, 116(16): 9221-9226. 〗
    [14] Wang H, John S T, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. PNAS, 2012, 109(17): 6463-6466.
    [15] Peng F, Miao M, Wang H, et al. Predicted lithium-boron compounds under high pressure [J]. J Am Chem Soc, 2012, 134(45): 18599-18605.
    [16] Zhou D, Li Q, Ma Y, et al. Unraveling convoluted structural transitions in SnTe at high pressure [J]. J Phys Chem C, 2013, 117(10): 5352-5357.
    [17] Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements [J]. J Am Chem Soc, 2012, 134(30): 12362-12365.
    [18] Li Q, Liu H, Zhou D, et al. A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2 [J]. Phys Chem Chem Phys, 2012, 14(37): 13081-13087.
    [19] Zhang X, Wang Y, Ma Y. High pressure structures of 111-type iron-based superconductors predicted from first-principles [J]. Phys Chem Chem Phys, 2012, 14(43): 15029-15035.
    [20] Luo X, Liu L M, Hu Z, et al. Two-dimensional superlattice: Modulation of band gaps in graphene-based monolayer carbon superlattices [J]. J Phys Chem Lett, 2012, 3(22): 3373-3378.
    [21] 〖JP4〗Gao G, Wang H, Zhu L, et al. Pressure-induced formation of noble metal hydrides [J]. J Phys Chem C, 2012, 116(2): 1995-2000.
    [22] 〖JP4〗Zhao Z, Xu B, Zhou X F, et al. Novel superhard carbon: C-centered orthorhombic C8 [J]. Phys Rev Lett, 2011, 107(21): 215502.
    [23] Zhao Z, Xu B, Wang L M, et al. Three dimensional carbon-nanotube polymers [J]. ACS Nano, 2011, 5(9): 7226-7234.
    [24] Gao G, Wang H, Bergara A, et al. Metallic and superconducting gallane under high pressure [J]. Phys Rev B, 2011, 84(6): 064118.
    [25] Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method [J]. J Am Chem Soc, 2011, 133(40): 16285-16290.
    [26] Wang Y, Miao M, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm [J]. J Chem Phys, 2012, 137(22): 224108.
    [27] 〖JP4〗Zhang X, Wang Y, Lv J, et al. First-principles structural design of superhard materials [J]. J Chem Phys, 2013, 138(11): 114101.
    [28] Hazen R M, Mao H K, Finger L W, et al. Single-crystal X-ray diffraction of n-H2 at high pressure [J]. Phys Rev B, 1987, 36(7): 3944-3947.
    [29] Silvera I F, Wijngaarden R J. New low-temperature phase of molecular deuterium at ultrahigh pressure [J]. Phys Rev Lett, 1981, 47(1): 39-42.
    [30] Loubeyre P, LeToullec R, Hausermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702-704.
    [31] Mao H K, Hemley R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Rev Mod Phys, 1994, 66(2): 671-692.
    [32] Akahama Y, Kawamura H, Hirao N, et al. Raman scattering and X-ray diffraction experiments for phase Ⅲ of solid hydrogen [J]. J Phys: Conf Ser, 2010, 215(1): 012056.
    [33] Akahama Y, Nishimura M, Kawamura H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Phys Rev B, 2010, 82(6): 060101.
    [34] Lorenzana H E, Silvera I F, Goettel K A. Evidence for a structural phase transition in solid hydrogen at megabar pressures [J]. Phys Rev Lett, 1989, 63(19): 2080-2083.
    [35] Mao H K, Hemley R J. Optical studies of hydrogen above 200 gigapascals: Evidence for metallization by band overlap [J]. Science, 1989, 244(19): 1462-1465.
    [36] Eggert J H, Moshary F, Evans W J, et al. Absorption and reflectance in hydrogen up to 230 GPa: Implications for metallization [J]. Phys Rev Lett, 1991, 66(2): 193-196.
    [37] Hanfland M, Hemley R J, Mao H K. Optical absorption measurements of hydrogen at megabar pressures [J]. Phys Rev B, 1991, 43(10): 8767-8770.
    [38] Kitamura H, Tsuneyuki S, Ogitsu T, et al. Quantum distribution of protons in solid molecular hydrogen at megabar pressures [J]. Nature, 2000, 404(6775): 259-262.
    [39] Kohanoff J, Scandolo S, Chiarotti G L, et al. Solid molecular hydrogen: The broken symmetry phase [J]. Phys Rev Lett, 1997, 78(14): 2783-2786.
    [40] Nagao K, Nagara H. Theoretical study of Raman and infrared active vibrational modes in highly compressed solid hydrogen [J]. Phys Rev Lett, 1998, 80(3): 548-551.
    [41] Nagao K, Takezawa T, Nagara H. Ab initio calculation of optical-mode frequencies in compressed solid hydrogen [J]. Phys Rev B, 1999, 59(21): 13741-13753.
    [42] Stdele M, Martin R M. Metallization of molecular hydrogen: Predictions from exact-exchange calculations [J]. Phys Rev Lett, 2000, 84(26): 6070-6073.
    [43] Cui L, Chen N H, Silvera I F. Excitations, order parameters, and phase diagram of solid deuterium at megabar pressures [J]. Phys Rev B, 1995, 51(21): 14987-14997.
    [44] Johnson K A, Ashcroft N W. Structure and bandgap closure in dense hydrogen [J]. Nature, 2000, 403(6770): 632-635.
    [45] Cui T, Cheng E, Alder B J, et al. Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study [J]. Phys Rev B, 1997, 55(18): 12253-12266.
    [46] Kaxiras E, Guo Z. Orientational order in dense molecular hydrogen: A first-principles path-integral Monte Carlo calculation [J]. Phys Rev B, 1994, 49(17): 11822-11832.
    [47] Maksimov E G, Shilov Y I. Hydrogen at high pressure [J]. Physics-Uspekhi, 1999, 42(11): 1121-1138.
    [48] Zhang L J, Niu Y L, Cui T, et al. Ab initio lattice dynamics evidence for the broken-symmetry phase of solid hydrogen [J]. J Phys: Condens Mat, 2006, 18(43): 9917.
    [49] 〖JP4〗McMahon J M, Ceperley D M. Ground-state structures of atomic metallic hydrogen [J]. Phys Rev Lett, 2011, 106(16): 165302.
    [50] Eremets M I, Troyan I A. Conductive dense hydrogen [J]. Nature Mater, 2011, 10(12): 927-931.
    [51] Howie R T, Guillaume C L, Scheler T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Phys Rev Lett, 2012, 108(12): 125501.
    [52] Martonak R, Laio A, Parrinello M. Predicting crystal structures: The Parrinello-Rahman method revisited [J]. Phys Rev Lett, 2003, 90(7): 075503.
    [53] Martonak R, Donadio D, Oganov A R, et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics [J]. Nature Mater, 2006, 5(8): 623-626.
    [54] Liu H, Zhu L, Cui W, et al. Room-temperature structures of solid hydrogen at high pressures [J]. J Chem Phys, 2012, 137(7): 074501.
    [55] Liu H, Ma Y. Proton or deuteron transfer in phase Ⅳ of solid hydrogen and deuterium [J]. Phys Rev Lett, 2013, 110(2): 025903.
    [56] Tonkov E Y, Ponyatovsky E G. Phase Transformations of Elements under High Pressure [M]. Boca Raton, FL: CRC Press, 2005.
    [57] Bini R, Ulivi L, Kreutz J, et al. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy [J]. J Chem Phys, 2000, 112(19): 8522-8529.
    [58] Eremets M I, Gavriliuk A G, Serebryanaya N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. J Chem Phys, 2004, 121(22): 11296.
    [59] Mailhiot C, Yang L H, McMahan A K. Polymeric nitrogen [J]. Phys Rev B, 1992, 46(22): 14419.
    [60] Martin R M, Needs R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Phys Rev B, 1986, 34(8): 5082-5092.
    [61] Lewis S P, Cohen M L. High-pressure atomic phases of solid nitrogen [J]. Phys Rev B, 1992, 46(17): 11117-11120.
    [62] Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
    [63] Yao Y, Tse J S, Tanaka K. Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm [J]. Phys Rev B, 2008, 77(5): 052103.
    [64] Ma Y, Oganov A R, Li Z, et al. Novel high pressure structures of polymeric nitrogen [J]. Phys Rev Lett, 2009, 102(6): 065501.
    [65] Meier R J, Helmholdt R B. Neutron-diffraction study of alpha- and beta-oxygen [J]. Phys Rev B, 1984, 29(3): 1387.
    [66] English C A, Venables J A. The structure of the diatomic molecular solids [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 340(1620): 57-80.
    [67] Horl E M. Structure and structure imperfections of solid-oxygen [J]. Acta Crystallographica, 1962, 15(9): 845-850.
    [68] LeSar R, Etters R D. Character of the alpha-beta phase transition in solid oxygen [J]. Phys Rev B, 1988, 37(10): 5364-5370.
    [69] Gorelli F A, Santoro M, Ulivi L, et al. Crystal structure of solid oxygen at high pressure and low temperature [J]. Phys Rev B, 2002, 65(17): 172106.
    [70] 〖JP4〗Goncharenko I N. Evidence for a magnetic collapse in the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2005, 94(20): 205701.
    [71] Neaton J B, Ashcroft N W. Low-energy linear structures in dense oxygen: Implications for the epsilon phase [J]. Phys Rev Lett, 2002, 88(20): 205503.
    [72] Serra S, Chiarotti G, Scandolo S, et al. Pressure-induced magnetic collapse and metallization of molecular oxygen: The zeta-O2 phase [J]. Phys Rev Lett, 1998, 80(23): 5160.
    [73] Schiferl D, Cromer D T, Mills R L. Structure of O2 at 5. 5 GPa and 299 K [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1981, 37(7): 1329-1332.
    [74] D'Amour H, Holzapfel W B, Nicol M. Solid oxygen near 298 K. The structure of beta-oxygen and identification of a new epsilon phase [J]. J Phys Chem, 1981, 85(2): 130-131.
    [75] Schiferl D, Cromer D T, Schwalbe L A, et al. Structure of 'orange' 18O2 at 9. 6 GPa and 297 K [J]. Acta Crystallographica Section B: Structural Science, 1983, 39(2): 153-157.
    [76] Fujihisa H, Akahama Y, Kawamura H, et al. O8 cluster structure of the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2006, 97(8): 085503.
    [77] Desgreniers S, Vohra Y K, Ruoff A L. Optical response of very high density solid oxygen to 132 GPa [J]. J Phys Chem, 1990, 94(3): 1117-1122.
    [78] Akahama Y, Kawamura H, Husermann D, et al. New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid [J]. Phys Rev Lett, 1995, 74(23): 4690.
    [79] Shimizu K, Suhara K, Ikumo M, et al. Superconductivity in oxygen [J]. Nature, 1998, 393(6687): 767-769.
    [80] Goncharov A F, Gregoryanz E, Hemley R J, et al. Molecular character of the metallic high-pressure phase of oxygen [J]. Phys Rev B, 2003, 68(10): 100102.
    [81] Weck G, Loubeyre P, LeToullec R. Observation of structural transformations in metal oxygen [J]. Phys Rev Lett, 2002, 88(3): 035504.
    [82] Weck G, Desgreniers S, Loubeyre P, et al. Single-crystal structural characterization of the metallic phase of oxygen [J]. Phys Rev Lett, 2009, 102(25): 255503.
  • [1] 赵永年邹广田 . 分子晶体的高压Raman光谱及结构相变. 高压物理学报, 1989, 3(4): 269-278 . doi: 10.11858/gywlxb.1989.04.002
    [2] 耿华运孙毅 . 氢的高压奇异结构与金属化. 高压物理学报, 2018, 32(2): 020101-1-020101-12. doi: 10.11858/gywlxb.20170674
    [3] 潘跃武于杰崔启良高春晓邹广田刘景 . 不同粒径纳米晶硫化锌的高压结构相变研究. 高压物理学报, 2007, 21(1): 29-34 . doi: 10.11858/gywlxb.2007.01.005
    [4] 顾惠成陈良辰褚君浩鲍忠兴刘克岳王金义郑康立 . Hg1-xCdxTe在高压下的结构、状态方程与相变. 高压物理学报, 2000, 14(4): 298-301 . doi: 10.11858/gywlxb.2000.04.011
    [5] 芶清泉 . 金属氢的高压合成机理. 高压物理学报, 1987, 1(1): 3-6 . doi: 10.11858/gywlxb.1987.01.001
    [6] 柳雷李晓东李延春唐玲云刘景毕延 . NiO的高压结构和等温状态方程研究. 高压物理学报, 2009, 23(3): 209-214 . doi: 10.11858/gywlxb.2009.03.008
    [7] 宋功保韩苍穹梁敬魁饶光辉 . 基于组分Ca2Pr2Cu5O10三元固溶区的范围和晶体结构. 高压物理学报, 2004, 18(1): 27-35 . doi: 10.11858/gywlxb.2004.01.006
    [8] 宋功保梁敬魁饶光辉 . 固相线下Pr1-xBa2-yCax+yCu3O7体系的相关系和晶体结构. 高压物理学报, 2004, 18(4): 309-314 . doi: 10.11858/gywlxb.2004.04.004
    [9] 金恩姬姚立德王菲菲沈希游淑洁杨留响蒋升李延春朱恪刘玉龙 . 高压下ZnSe 纳米带的结构相变及拉曼散射研究. 高压物理学报, 2009, 23(4): 241-246 . doi: 10.11858/gywlxb.2009.04.001
    [10] 陈良辰张芝婷车荣钲俞汀南李凤英顾惠成徐丽雯王积方 . 超高压下碘的结构相变. 高压物理学报, 1993, 7(2): 123-126 . doi: 10.11858/gywlxb.1993.02.007
    [11] 贺春元高春晓李明郝爱民黄晓伟于翠铃张冬梅王月邹广田 . CdSe在高压下的电学性质及相变. 高压物理学报, 2008, 22(1): 39-42 . doi: 10.11858/gywlxb.2008.01.009
    [12] 何运鸿田雨赵慧芳姜峰谭大勇肖万生 . 高氯酸钠高压相变的拉曼光谱证据. 高压物理学报, 2018, 32(4): 041201-1-041201-9. doi: 10.11858/gywlxb.20180543
    [13] 李雪飞马艳梅沈龙海张剑类伟巍刘伟邹广田 . 石墨相C3N4压致结构相变研究. 高压物理学报, 2010, 24(1): 67-70 . doi: 10.11858/gywlxb.2010.01.012
    [14] 韩杰邹广田崔田 . Ba3Bi3Ti4NbO18的压致结构相变. 高压物理学报, 1999, 13(1): 34-36 . doi: 10.11858/gywlxb.1999.01.006
    [15] 刘宏建王一峰杨景海李莉萍苏文辉关中素于宝贵 . 高温高压合成的SrSiO3:Eu3+Bi3+的结构及其对发光特性的影响. 高压物理学报, 1990, 4(4): 284-290 . doi: 10.11858/gywlxb.1990.04.008
    [16] 赵旭禹日成李凤英刘振兴鲍忠兴唐贵德刘景靳常青 . 高压下Sr2FeMoxNb1-xO6 (x=0, 0.3)的电学性质和结构稳定性. 高压物理学报, 2003, 17(4): 301-304 . doi: 10.11858/gywlxb.2003.04.010
    [17] 靳锡联崔田 . 高压下典型小分子晶体的结构和行为. 高压物理学报, 2013, 27(2): 188-198. doi: 10.11858/gywlxb.2013.02.004
    [18] 孙莹钟鑫吕健马琰铭 . 氧族氢化物的压致金属化与奇异超导电性. 高压物理学报, 2018, 32(1): 010102-1-010102-10. doi: 10.11858/gywlxb.20170629
    [19] 李鑫马雪姣高文泉刘艳辉 . 高压下Ir2P晶体结构预测与物理性质. 高压物理学报, 2019, 33(1): 011103-1-011103-6. doi: 10.11858/gywlxb.20180645
    [20] 赵永年刘振先崔启良徐义秋樊玉国邹广田 . MnF2的高压Raman光谱研究. 高压物理学报, 1990, 4(1): 1-6 . doi: 10.11858/gywlxb.1990.01.001
  • 加载中
计量
  • 文章访问数:  1306
  • 阅读全文浏览量:  14
  • PDF下载量:  261
出版历程
  • 收稿日期:  2013-04-23
  • 录用日期:  2013-05-09
  • 刊出日期:  2013-06-15

典型双原子分子晶体的高压解离和单原子相

    通讯作者: 马琰铭, mym@jlu.edu.cn
  • 1. 吉林大学超硬材料国家重点实验室,吉林长春 130012;
  • 2. 吉林大学材料科学与工程学院,吉林长春 130012

摘要: 高压可以有效地改变材料内部原子间的相互作用(如电子轨道重叠、化学成键、电荷分布等),进而改变材料的晶体结构、力学、热学、光学、电学等宏观物理性质。一百多年来,实验压力极限和高压理论方法的不断突破推动着高压学科的快速发展。在高压科学中,典型非极性双原子分子晶体的高压解离研究无疑是挑战高压极限的热点问题,也是20世纪高压物理重点解决的关键问题。针对元素周期表中质量最轻的H2、O2和N2 3种典型双原子共价非极性分子晶体的高压解离行为进行讨论,具体分析了解离产生的物理机制,评述了分子解离后形成的单原子相。

English Abstract

参考文献 (82)

目录

    /

    返回文章
    返回