界面增强多晶点阵结构的耐撞吸能性能

杨帆 卞奕杰 王鹏 李浦昊 张思远 范华林

杨帆, 卞奕杰, 王鹏, 李浦昊, 张思远, 范华林. 界面增强多晶点阵结构的耐撞吸能性能[J]. 高压物理学报, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
引用本文: 杨帆, 卞奕杰, 王鹏, 李浦昊, 张思远, 范华林. 界面增强多晶点阵结构的耐撞吸能性能[J]. 高压物理学报, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827
Citation: YANG Fan, BIAN Yijie, WANG Peng, LI Puhao, ZHANG Siyuan, FAN Hualin. Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024201. doi: 10.11858/gywlxb.20210827

界面增强多晶点阵结构的耐撞吸能性能

doi: 10.11858/gywlxb.20210827
基金项目: 国家自然科学基金(11772231);机械结构力学及控制国家重点实验室开放课题(MCMS-E-0221G02);爆炸科学与技术国家重点实验室(北京理工大学)开放课题(KFJJ22-08M)
详细信息
    作者简介:

    卞奕杰(1996-),男,硕士研究生,主要从事轻质结构吸能研究. E-mail:yjbian96@163.com

    通讯作者:

    杨 帆(1980-),男,博士,教授,主要从事新型材料和结构力学行为研究.E-mail:fanyang@tongji.edu.cn

  • 中图分类号: O347.3

Crashworthiness and Energy Absorption Properties of Polycrystal-Like Lattice Structures Strengthened by Interfaces

  • 摘要: 3D打印技术有力促进了金属点阵材料的发展,而碰撞吸能是点阵材料的重要应用领域之一,为此综述了课题组近期在界面增强点阵吸能方面的研究。受金属材料微观变形机理中晶界强化机制的启发,通过在点阵结构中引入晶界和孪晶界等宏观界面构型,构造了含多个界面的多晶点阵结构,研究其耐撞吸能性能。具体而言,构造了胞元构型为简单立方、面心立方和三斜晶系的不同多晶点阵结构试件,通过一系列参数化有限元模拟,并结合增材制造技术开展验证性实验,研究了晶粒尺寸(晶界密度)、界面两侧晶向差、界面取向角度等参数对结构压溃变形模式和吸能性能的影响,发现对称性强的界面(如孪晶界)可以增强点阵结构的吸能性能。进一步研究发现,描述材料微观强化机理的Hall-Petch关系仍然适用于所提宏观多晶点阵结构。该研究可为发展新型轻质点阵吸能结构提供一定的参考。

     

  • 图  有限元模型示意图[24]

    Figure  1.  Schematic of the finite element model[24]

    图  SC四晶点阵结构及其组成的单晶结构的变形模式[24]

    Figure  2.  Deformation modes of the SC quad-crystal lattice and the four composing SC lattices[24]

    图  FCC多晶点阵结构的变形模式及力-位移曲线[25]

    Figure  3.  Deformation modes and force-displacement curves of the polycrystalline-like FCC lattice structures[25]

    图  仿钠长石微观结构的三斜孪晶点阵结构的构建[26]

    Figure  4.  Construction of the macro triclinic twin lattice structures inspired by microstructure of feldspar[26]

    图  三斜孪晶点阵结构的变形模式[26]

    Figure  5.  Deformation modes of triclinic twin lattices with different number of twin boundaries[26]

    图  三斜孪晶点阵结构的模拟结果:(a) 吸能和比吸能,(b) 应力-应变曲线(上)和吸能效率-应变曲线(下)[26]

    Figure  6.  Simulation results of triclinic twin lattices: (a) EA and SEA of triclinic twin lattices; (b) stress-strain curves (upper) and energy absorption efficiency-strain curves (bottom)[26]

    图  3种晶系多晶点阵结构的比吸能比较

    Figure  7.  Comparison of specific energy absorption between three types of polycrystal-like lattice structures

    表  1  SC点阵结构的有限元模拟与理论预测结果对比[24]

    Table  1.   Comparison of the simulation results with the theoretical predictions for SC lattice[24]

    Lattice orientation/(°)Counted cell numberEnergy absorption/mJRelative error/%
    TheoreticalSimulation
    090271.433260.6164.151
    1568289.487261.44610.725
    3068327.040368.34411.213
    4560255.910269.4205.014
    下载: 导出CSV
  • [1] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517–535.

    LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517–535.
    [2] 吴林志, 泮世东. 夹芯结构的设计及制备现状 [J]. 中国材料进展, 2009, 28(4): 40–45.

    WU L Z, PAN S D. Survey of design and manufacturing of sandwich structures [J]. Materials China, 2009, 28(4): 40–45.
    [3] HOU A, GRAMOL K. Design and fabrication of CFRP interstage attach fitting for launch vehicles [J]. Journal of Aerospace Engineering, 1999, 12(3): 83–91. doi: 10.1061/(ASCE)0893-1321(1999)12:3(83)
    [4] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
    [5] WEI K, YANG Q D, YANG X J, et al. Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting [J]. Thin-Walled Structures, 2020, 146: 106189. doi: 10.1016/j.tws.2019.106189
    [6] 方岱宁, 郭海成, SOH A K, 等. 轻质点阵材料的力学行为分析[C]//首届全国航空航天领域中的力学问题学术研讨会论文集(下册). 北京: 中国力学学会, 2004.
    [7] 易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述 [J]. 功能材料, 2017, 48(10): 10055–10065.

    YI C Y, BAI L, CHEN X H, et al. Review on the metal three-dimensional lattice topology configurations research and application status [J]. Journal of Functional Materials, 2017, 48(10): 10055–10065.
    [8] 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展 [J]. 力学进展, 2007, 37(1): 99–112.

    FAN H L, YANG W. Development of lattice materials with high specific stiffness and strength [J]. Advances in Mechanics, 2007, 37(1): 99–112.
    [9] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. doi: 10.1016/j.ijsolstr.2010.10.018
    [10] ZHANG P, TOMAN J, YU Y Q, et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation [J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004. doi: 10.1115/1.4028724
    [11] ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. doi: 10.1016/j.mechmat.2015.11.014
    [12] SHEN C J, LU G, YU T X. Dynamic behavior of graded honeycombs: a finite element study [J]. Composite Structures, 2013, 98: 282–293. doi: 10.1016/j.compstruct.2012.11.002
    [13] WU H X, LIU Y, ZHANG X C. In-plane crushing behavior and energy absorption design of composite honeycombs [J]. Acta Mechanica Sinica, 2018, 34(6): 1108–1123. doi: 10.1007/s10409-018-0798-4
    [14] 殷莎. 基于Ashby设计思想的新型点阵结构——制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [15] YIN S, CHEN H Y, LI J N, et al. Effects of architecture level on mechanical properties of hierarchical lattice materials [J]. International Journal of Mechanical Sciences, 2019, 157/158: 282–292.
    [16] LI Z, YANG F. Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations [J]. Extreme Mechanics Letters, 2017, 16: 41–48. doi: 10.1016/j.eml.2017.09.003
    [17] PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature, 2019, 565: 305–311. doi: 10.1038/s41586-018-0850-3
    [18] YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites [J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341. doi: 10.1016/j.jmps.2021.104341
    [19] XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. doi: 10.3390/ma13184083
    [20] LU Z H, YAN W Y, YAN P F, et al. A novel precipitate-type architected metamaterial strengthened via orowan bypass-like mechanism [J]. Applied Science, 2020, 10(21): 7525. doi: 10.3390/app10217525
    [21] MA C P, ZHANG Z W, LUCE B, et al. Accelerated design and characterization of non-uniform cellular materials via a machine-learning based framework [J]. NPJ Computational Materials, 2020, 6(1): 1–8. doi: 10.1038/s41524-019-0267-z
    [22] VANGELATOS Z, KOMVOPOULOS K, GRIGOROPOULOS C P. Regulating the mechanical behavior of metamaterial microlattices by tactical structure modification [J]. Journal of the Mechanics and Physics of Solids, 2020, 144: 104112. doi: 10.1016/j.jmps.2020.104112
    [23] WU W W, KIM S, RAMAZANI A, et al. Twin mechanical metamaterials [EB/OL]. (2021-01-04)[2021-06-21]. https://arxiv.org/-abs/2101.00927.
    [24] BIAN Y J, LI P H, YANG F, et al. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics, 2020, 41(10): 1561–1582. doi: 10.1007/s10483-020-2648-8
    [25] LI W W, FAN H L, BIAN Y J, et al. Plastic deformation and energy absorption of polycrystalline-like lattice structures [J]. Materials & Design, 2021, 198(1): 109321.
    [26] BIAN Y J, YANG F, LI P H, et al. Energy absorption properties of macro triclinic lattice structures with twin boundaries inspired by microstructure of feldspar twinning crystals [J]. Composite Structures, 2021, 271: 114103. doi: 10.1016/j.compstruct.2021.114103
    [27] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, part Ⅰ: quasi-static strength predicted by limit analysis [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1223–1230. doi: 10.1016/j.ijimpeng.2009.05.011
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  999
  • HTML全文浏览量:  539
  • PDF下载量:  31
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-09

目录

    /

    返回文章
    返回