晶体塑性有限元在材料动态响应研究中的应用进展

郑松林

引用本文:
Citation:

晶体塑性有限元在材料动态响应研究中的应用进展

    作者简介: 郑松林(1987—),男,博士,助理研究员,主要从事材料微结构演化模拟研究. E-mail:hizhengsl@foxmail.com;
  • 中图分类号: O344.1

Advances in the Study of Dynamic Response of Crystalline Materials by Crystal Plasticity Finite Element Modeling

  • CLC number: O344.1

  • 摘要: 作为连续尺度上描述各向异性非均质材料弹塑性变形的重要模拟工具,晶体塑性有限元能够有效预测材料的宏观力学性能,在工程设计方面起着重要的作用。在实际工程应用中,许多晶体材料在高应力、高变形率、高温等极端条件下服役,此时各向异性非均匀的微介观结构演化是理解材料动态响应的关键,这给晶体塑性有限元带来了巨大的机遇和挑战。首先简要综述了晶体塑性有限元的原理和方法,然后着重介绍其在材料动态响应中的应用,最后展望其在材料动态响应模拟方面的发展方向。
  • 图 1  一般多孔单晶的变形梯度分解${{F}} = {{{F}}_{\rm{e}}}{{{F}}_{\rm{p}}}{{{F}}_{\rm{d}}}$,包含可逆弹性部分${{{F}}_{\rm{e}}}$、不可逆偏量部分${{{F}}_{\rm{p}}}$以及不可逆体变部分${{{F}}_{\rm{d}}}$[91]

    Figure 1.  Schematic of a multiplicative decomposition of total macroscopic deformation gradient tensor ${{F}}$ into elastic ${{{F}}_{\rm{e}}}$, irreversible deviatoric ${{{F}}_{\rm{p}}}$, and irreversible volumetric parts ${{{F}}_{\rm{d}}}$[91]

    图 2  利用唯象模型模拟晶体在32 GPa压力下的变形情况:(a)为应力演化,(b)和(c)为不同时刻t的滑移率分布[97]

    Figure 2.  Deformation of the crystal under an applied pressure of 32 GPa in Ref. [97]: (a) shows the stress evolution, and (b), (c) show the rates of accumulated slip at different times ($t$)

    图 3  耦合了p-V-T状态方程的CPFE模拟一维冲击下波前温度及温差随压力的变化[99]

    Figure 3.  Temperature and contributions to temperature change behind shock front as computed in 1D uniaxial strain simulations by using coupled pVT-CPFE models[99]

    图 4  RDX在[111]方向受到1.25 GPa加载时粒子速度剖面[100](实线是实验结果[101],虚线为模拟结果)

    Figure 4.  Particle velocity profile of $ \alpha $-RDX single crystal loaded up to 1.25 GPa along the [111] crystallographic direction (Solid lines correspond to the experimental results [101] while dashed lines correspond to the model predictions [100].)

    图 5  利用Lagrangean框架建立的唯象CPFE模拟等径角板牙的高应变率变形:(a)几何构型,其中V为此区域外加的速度场;(b)变形率分布[102]

    Figure 5.  High strain rate deformation of equal-diameter dies simulated by the phenomenological CPFE within the Lagrangean framework. (a) shows the geometry configuration where V is the imposed velocity in the specified domains, and (b) is the deformation rate distribution [102]

    图 6  利用Winey-Gupta模型模拟LiF受[100]方向冲击时的纵波历史(实线为实验测量值,虚线为模拟值;曲线上方数字表示试样的厚度,单位为毫米[105]

    Figure 6.  Measured and simulated longitudinal stress histories for LiF single crystals shocked along the [100] orientation by Winey-Gupta model [105] (The solid lines are the experimental data and the dashed lines are the simulations. The numbers above the curves indicate the sample thickness in mm. Time is relative to the moment of impact.)

    图 7  利用Austin- McDowell模型模拟6061-T6的Hugoniot塑性变形的临界剪切应力(数据点为实验结果;左上角给出了数据点的来源,尺寸参数表示晶粒尺寸,具体信息见文献[106])

    Figure 7.  The critical shear stress of Hugoniot plastic deformation of 6061-T6 simulated by the Austin-McDowell model (The symbols show the experimental results. The legend gives the sources of the experimental data, and the measurements show the grain sizes, please see Ref.[106] for the detail information.)

    图 8  利用Lloyd等[108]模型模拟沿不同晶向冲击下单晶铝的粒子速度剖面

    Figure 8.  Particle velocity profile of single crystal Al shocked along different crystallographic directions simulated by the Lloyd model[108]

    图 9  大量实验和模拟得到铜的流变应力-应变率关系(红线是Hansen等的模拟,数据点是实验结果,具体见文献[111])

    Figure 9.  Flow stress versus strain rate for copper: various simulation and experimental results as indicated in the legend, and the red lines show the Hansen’s results (see Ref.[111])

    图 10  Be材料冲击加卸载下的孪晶体积份额分布[120]

    Figure 10.  Fraction of twinning in Be materials in the impact loading and unloading[120]

    图 11  CPFE模拟钨合金中的冲击破碎现象[122]

    Figure 11.  Impact fracture in tungsten alloy simulated by CPFE models[122]

  • [1] TAYLOR G I. Plastic strain in metals [J]. Journal of the Institute of Metals, 1938, 62: 307–324.
    [2] BISHOP J F W, HILL R. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951, 42(327): 414–427. doi: 10.1080/14786445108561065
    [3] BISHOP J F W, HILL R. A theoretical derivation of the plastic properties of a polycrystalline face-centered metal [J]. Philosophical Magazine, 1951, 42(334): 1298–1307.
    [4] KRONER E. On the plastic deformation of polycrystals [J]. Acta Metallurgica, 1961, 9(2): 155–161. doi: 10.1016/0001-6160(61)90060-8
    [5] CURTIN W A, MILLER R E. Atomistic/continuum coupling in computational materials science [J]. Modelling and Simulation in Materials Science and Engineering, 2003, 11(3): R33. doi: 10.1088/0965-0393/11/3/201
    [6] ARSENLIS A, PARKS D M, BECKER R, et al. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(6): 1213–1246. doi: 10.1016/j.jmps.2003.12.007
    [7] VITEK V, MROVEC M, BASSANI J L. Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling [J]. Materials Science and Engineering: A, 2004, 365(1/2): 31–37.
    [8] ZIENKIEWICZ O C, CHEUNG Y K. The finite element method in structural and continuum mechanics [M]. London: McGraw-Hill, 1967.
    [9] ZIENKIEWICZ O C, TAYLOR R L. The finite element method for solid and structural mechanics [M]. Elsevier Ltd, 2005.
    [10] ZHAO Z, MAO W, ROTERS F, et al. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method [J]. Acta Materialia, 2004, 52(4): 1003–1012. doi: 10.1016/j.actamat.2003.03.001
    [11] RICE J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity [J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433–455. doi: 10.1016/0022-5096(71)90010-X
    [12] ASARO R J, RICE J R. Strain localization in ductile single crystals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309–338. doi: 10.1016/0022-5096(77)90001-1
    [13] ARSENLIS A, PARKS D M. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density [J]. Acta Materialia, 1999, 47(5): 1597–1611. doi: 10.1016/S1359-6454(99)00020-8
    [14] ARSENLIS A, PARKS D M. Modeling the evolution of crystallographic dislocation density in crystal plasticity [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 1979–2009. doi: 10.1016/S0022-5096(01)00134-X
    [15] EVERS L P, PARKS D M, BREKELMANS W A M, et al. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(11): 2403–2424. doi: 10.1016/S0022-5096(02)00032-7
    [16] EVERS L P, BREKELMANS W A M, GEERS M G D. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects [J]. International Journal of Solids and Structures, 2004, 41(18/19): 5209–5230.
    [17] CHEONG K S, BUSSO E P. Discrete dislocation density modelling of single phase FCC polycrystal aggregates [J]. Acta Materialia, 2004, 52(19): 5665–5675. doi: 10.1016/j.actamat.2004.08.044
    [18] MA A, ROTERS F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Materialia, 2004, 52(12): 3603–3612. doi: 10.1016/j.actamat.2004.04.012
    [19] MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J]. Acta Materialia, 2006, 54(8): 2169–2179. doi: 10.1016/j.actamat.2006.01.005
    [20] MA A, ROTERS F, RAABE D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling-theory, experiments, and simulations [J]. Acta Materialia, 2006, 54(8): 2181–2194. doi: 10.1016/j.actamat.2006.01.004
    [21] EVERS L P, BREKELMANS W A M, GEERS M G D. Non-local crystal plasticity model with intrinsic SSD and GND effects [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2379–2401. doi: 10.1016/j.jmps.2004.03.007
    [22] THAMBURAJA P, ANAND L. Polycrystalline shape-memory materials: effect of crystallographic texture [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 709–737. doi: 10.1016/S0022-5096(00)00061-2
    [23] LAN Y J, XIAO N M, LI D Z, et al. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model [J]. Acta Materialia, 2005, 53(4): 991–1003. doi: 10.1016/j.actamat.2004.10.045
    [24] KALIDINDI S R. Incorporation of deformation twinning in crystal plasticity models [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 267–290. doi: 10.1016/S0022-5096(97)00051-3
    [25] STAROSELSKY A, ANAND L. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(4): 671–696. doi: 10.1016/S0022-5096(97)00071-9
    [26] MARKETZ W T, FISCHER F D, KAUFFMANN F, et al. On the role of twinning during room temperature deformation of γ-TiAl based alloys [J]. Materials Science & Engineering A, 2002, 329: 177–183.
    [27] SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling [J]. Acta Materialia, 2005, 53(12): 3495–3502. doi: 10.1016/j.actamat.2005.04.014
    [28] WEI Y J, ANAND L. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2587–2616. doi: 10.1016/j.jmps.2004.04.006
    [29] WEI Y, SU C, ANAND L. A computational study of the mechanical behavior of nanocrystalline fcc metals [J]. Acta Materialia, 2006, 54(12): 3177–3190. doi: 10.1016/j.actamat.2006.03.007
    [30] RAABE D, KLOSE P, ENGL B, et al. Concepts for integrating plastic anisotropy into metal forming simulations [J]. Advanced Engineering Materials, 2002, 4(4): 169–180. doi: 10.1002/1527-2648(200204)4:4<>1.0.CO;2-G
    [31] SACHTLEBER M, ZHAO Z, RAABE D. Experimental investigation of plastic grain interaction [J]. Materials Science and Engineering A, 2002, 336(1/2): 81–87.
    [32] RAABE D, SACHTLEBER M, WEILAND H, et al. Grain-scale micromechanics of polycrystal surfaces during plastic straining [J]. Acta Materialia, 2003, 51(6): 1539–1560. doi: 10.1016/S1359-6454(02)00557-8
    [33] ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152–1211. doi: 10.1016/j.actamat.2009.10.058
    [34] SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals [J]. Progress in Materials Science, 2017, 88: 186–231. doi: 10.1016/j.pmatsci.2017.04.004
    [35] MOLINARI A, RAVICHANDRAN G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length [J]. Mechanics of Materials, 2005, 37(7): 737–752. doi: 10.1016/j.mechmat.2004.07.005
    [36] JOHNSON G R. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]. Proceedings of the 7th International Symposium on Ballistics, 1983: 541-547.
    [37] KHAN A S, HUANG S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5–104 s-1 [J]. International Journal of Plasticity, 1992, 8(4): 397–424. doi: 10.1016/0749-6419(92)90057-J
    [38] LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733–1759.
    [39] KOCKS U F. Laws for work-hardening and low-temperature creep [J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76–85. doi: 10.1115/1.3443340
    [40] LIN Y C, CHEN M S, ZHONG J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Computational Materials Science, 2008, 42(3): 470–477. doi: 10.1016/j.commatsci.2007.08.011
    [41] BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics, 1975, 42(2): 385–389. doi: 10.1115/1.3423586
    [42] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [43] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [44] MEYER H W JR. A modified Zerilli-Armstrong constitutive model describing the strength and localizing behavior of Ti-6A1-4V: ARL-CR-0578 [R]. Aberdeen, MD: Dynamic Science Inc., 2006.
    [45] MECKING H, KOCKS U F. Kinetics of flow and strain-hardening [J]. Acta Metallurgica, 1981, 29(11): 1865–1875. doi: 10.1016/0001-6160(81)90112-7
    [46] NEMAT-NASSER S, LI Y. Flow stress of fcc polycrystals with application to OFHC Cu [J]. Acta Materialia, 1998, 46(2): 565–577. doi: 10.1016/S1359-6454(97)00230-9
    [47] TAYLOR G I. The mechanism of plastic deformation of crystals. Part I. theoretical [J]. Proceedings of the Royal Society of London A, 1934, 145(855): 362–387. doi: 10.1098/rspa.1934.0106
    [48] Taylor G I. The mechanism of plastic deformation of crystals. Part II. comparison with observations [J]. Proceedings of the Royal Society of London A, 1934, 145(855): 388–404. doi: 10.1098/rspa.1934.0107
    [49] OROWAN E. Zur Kristall Plastizität IIII [J]. Zeitschrift für Physik, 1934, 89: 605–659. doi: 10.1007/BF01341478
    [50] POLANYI M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte [J]. Zeitschrift für Physik, 1934, 89(9/10): 660–664.
    [51] PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30(6): 1087–1119. doi: 10.1016/0001-6160(82)90005-0
    [52] HARREN S V, DEVE H E, ASARO R J. Shear band formation in plane strain compression [J]. Acta Metallurgica, 1988, 36(9): 2435–2480. doi: 10.1016/0001-6160(88)90193-9
    [53] HARREN S V, ASARO R J. Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model [J]. Journal of the Mechanics and Physics of Solids, 1989, 37(2): 191–232. doi: 10.1016/0022-5096(89)90010-0
    [54] BECKER R. Analysis of texture evolution in channel die compression-I. effects of grain interaction [J]. Acta Metallurgica et Materialia, 1991, 39(6): 1211–1230. doi: 10.1016/0956-7151(91)90209-J
    [55] BECKER R, BUTLER J F, HU H, et al. Analysis of an aluminum single crystal with unstable initial orientation (001)[110] in channel die compression [J]. Metallurgical Transactions A, 1991, 22(1): 45–58. doi: 10.1007/BF03350948
    [56] ZHAO Z, RAMESH M, RAABE D, et al. Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal [J]. International Journal of Plasticity, 2008, 24(12): 2278–2297. doi: 10.1016/j.ijplas.2008.01.002
    [57] MIKA D P, DAWSON P R. Effects of grain interaction on deformation in polycrystals [J]. Materials Science and Engineering: A, 1998, 257(1): 62–76. doi: 10.1016/S0921-5093(98)00824-7
    [58] SARMA G B, DAWSON P R. Texture predictions using a polycrystal plasticity model incorporating neighbor interactions [J]. International Journal of Plasticity, 1996, 12(8): 1023–1054. doi: 10.1016/S0749-6419(96)00040-X
    [59] SARMA G B, RADHAKRISHNAN B, ZACHARIA T. Finite element simulations of cold deformation at the mesoscale [J]. Computational Materials Science, 1998, 12(2): 105–123. doi: 10.1016/S0927-0256(98)00036-6
    [60] BEAUDOIN A J JR, MECKING H, KOCKS U F. Development of localized orientation gradients in fcc polycrystals [J]. Philosophical Magazine A, 1996, 73(6): 1503–1517. doi: 10.1080/01418619608242998
    [61] BACHU V, KALIDINDI S R. On the accuracy of the predictions of texture evolution by the finite element technique for fcc polycrystals [J]. Materials Science and Engineering A, 1998, 257(1): 108–117. doi: 10.1016/S0921-5093(98)00828-4
    [62] ZHAO Z, KUCHNICKI S, RADOVITZKY R, et al. Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM [J]. Acta Materialia, 2007, 55(7): 2361–2373. doi: 10.1016/j.actamat.2006.11.035
    [63] ZHAO Z, ROTERS F, MAO W, et al. Introduction of a texture component crystal plasticity finite element method for anisotropy simulations [J]. Advanced Engineering Materials, 2001, 3(12): 984–990. doi: 10.1002/1527-2648(200112)3:12<984::AID-ADEM984>3.0.CO;2-L
    [64] RAABE D, ROTERS F. Using texture components in crystal plasticity finite element simulations [J]. International Journal of Plasticity, 2004, 20(3): 339–361. doi: 10.1016/S0749-6419(03)00092-5
    [65] MELCHIOR M A, DELANNAY L. A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size [J]. Computational Materials Science, 2006, 37(4): 557–564. doi: 10.1016/j.commatsci.2005.12.002
    [66] TÓTH L S, VAN HOUTTE P. Discretization techniques for orientation distribution functions [J]. Texture, Stress, and Microstructure, 1992, 19(4): 229–244. doi: 10.1155/TSM.19.229
    [67] EISENLOHR P, ROTERS F. Selecting a set of discrete orientations for accurate texture reconstruction [J]. Computational Materials Science, 2008, 42(4): 670–678. doi: 10.1016/j.commatsci.2007.09.015
    [68] FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42(2): 475–487. doi: 10.1016/0956-7151(94)90502-9
    [69] FLECK N A, HUTCHINSON J W. Strain gradient plasticity [J]. Advances in Applied Mechanics, 1997, 33: 296–361.
    [70] NIX W D, GAO H. Indentation size effects in crystalline materials: a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411–425. doi: 10.1016/S0022-5096(97)00086-0
    [71] GAO H, HUANG Y. Geometrically necessary dislocation and size-dependent plasticity [J]. Scripta Materialia, 2003, 48(2): 113–118. doi: 10.1016/S1359-6462(02)00329-9
    [72] BIELER T R, EISENLOHR P, ROTERS F, et al. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals [J]. International Journal of Plasticity, 2009, 25(9): 1655–1683. doi: 10.1016/j.ijplas.2008.09.002
    [73] STAROSELSKY A, ANAND L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. International Journal of Plasticity, 2003, 19(10): 1843–1864. doi: 10.1016/S0749-6419(03)00039-1
    [74] SUIKER A S J, TURTELTAUB S. Computational modelling of plasticity induced by martensitic phase transformations [J]. International Journal for Numerical Methods in Engineering, 2005, 63(12): 1655–1693. doi: 10.1002/(ISSN)1097-0207
    [75] HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proceedings of the Royal Society of London A, 1976, 348(1652): 101–127. doi: 10.1098/rspa.1976.0027
    [76] PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metallurgica, 1983, 31(12): 1951–1976. doi: 10.1016/0001-6160(83)90014-7
    [77] VOCE E. The relationship between stress and strain for homogeneous deformation [J]. Journal of the Institute of Metals, 1948, 74: 537–562.
    [78] BRONKHORST C A, KALIDINDI S R, ANAND L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals [J]. Philosophical Transactions of the Royal Society A, 1992, 341(1662): 443–477.
    [79] HALL E O. The deformation and ageing of mild steel: III. discussion of results [J]. Proceedings of the Physical Society: Section B, 1951, 64(9): 747. doi: 10.1088/0370-1301/64/9/303
    [80] PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
    [81] NYE J F. Some geometrical relations in dislocated crystals [J]. Acta Metallurgica, 1953, 1(2): 153–162. doi: 10.1016/0001-6160(53)90054-6
    [82] GREENWOOD G W, JOHNSON R H. The deformation of metals under small stresses during phase transformations [J]. Proceedings of the Royal Society of London A, 1965, 283(1394): 403–422. doi: 10.1098/rspa.1965.0029
    [83] PATEL J R, COHEN M. Criterion for the action of applied stress in the martensitic transformation [J]. Acta Metallurgica, 1953, 1(5): 531–538. doi: 10.1016/0001-6160(53)90083-2
    [84] TURTELTAUB S, SUIKER A S J. Transformation-induced plasticity in ferrous alloys [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1747–1788. doi: 10.1016/j.jmps.2005.03.004
    [85] TURTELTAUB S, SUIKER A S J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations [J]. International Journal of Solids and Structures, 2006, 43(14/15): 4509–4545.
    [86] DOQUET V. Twinning and multiaxial cyclic plasticity of a low stacking-fault-energy fcc alloy [J]. Acta Metallurgica et Materialia, 1993, 41(8): 2451–2459. doi: 10.1016/0956-7151(93)90325-M
    [87] SCHLÖGL S M, FISCHER F D. The role of slip and twinning in the deformation behaviour of polysynthetically twinned crystals of TiAl: a micromechanical model [J]. Philosophical Magazine A, 1997, 75(3): 621–636. doi: 10.1080/01418619708207193
    [88] MECKING H, HARTIG C, KOCKS U F. Deformation modes in γ-TiAl as derived from the single crystal yield surface [J]. Acta Materialia, 1996, 44(4): 1309–1321. doi: 10.1016/1359-6454(95)00308-8
    [89] VASUDEVAN A K, DOHERTY R D. Grain boundary ductile fracture in precipitation hardened aluminum alloys [J]. Acta Metallurgica, 1987, 35(6): 1193–1219. doi: 10.1016/0001-6160(87)90001-0
    [90] SURESH S, VASUDEVAN A K, TOSTEN M, et al. Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys [J]. Acta Metallurgica, 1987, 35(1): 25–46. doi: 10.1016/0001-6160(87)90210-0
    [91] NGUYEN T, LUSCHER D J, WILKERSON J W. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals [J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 1–29.
    [92] ZIKRY M A, NEMAT-NASSER S. High strain-rate localization and failure of crystalline materials [J]. Mechanics of Materials, 1990, 10(3): 215–237. doi: 10.1016/0167-6636(90)90044-G
    [93] SCHOENFELD S E. Dynamic behaviour of polycrystalline tantalum [J]. International Journal of Plasticity, 1998, 14(9): 871–890. doi: 10.1016/S0749-6419(98)00034-5
    [94] KNEZEVIC M, BEYERLEIN I J, LOVATO M L, et al. A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: application to tantalum-tungsten alloys [J]. International Journal of Plasticity, 2014, 62: 93–104. doi: 10.1016/j.ijplas.2014.07.007
    [95] LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 80–96. doi: 10.1016/j.jmps.2014.10.003
    [96] LIM H, HALE L M, ZIMMERMAN J A, et al. A multi-scale model of dislocation plasticity in α-Fe: incorporating temperature, strain rate and non-Schmid effects [J]. International Journal of Plasticity, 2015, 73: 100–118. doi: 10.1016/j.ijplas.2014.12.005
    [97] BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
    [98] SIMMONS G, WANG H. A handbook of single crystal elastic constants and calculated aggregate properties [M]. Cambridge, Mass: MIT Press, 1971.
    [99] LUSCHER D J, BRONKHORST C A, ALLEMAN C N, et al. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(9): 1877–1894. doi: 10.1016/j.jmps.2013.05.002
    [100] DE S, ZAMIRI A R. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 287–301. doi: 10.1016/j.jmps.2013.10.012
    [101] CAWKWELL M J, RAMOS K J, HOOKS D E, et al. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading [J]. Journal of Applied Physics, 2010, 107(6): 063512. doi: 10.1063/1.3305630
    [102] CAZACU O, IONESCU I R. Dynamic crystal plasticity: an Eulerian approach [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(6): 844–859. doi: 10.1016/j.jmps.2010.04.001
    [103] CLAYTON J D. Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory [J]. International Journal of Engineering Science, 2014, 79: 1–20. doi: 10.1016/j.ijengsci.2014.02.016
    [104] WINEY J M, GUPTA Y M. Nonlinear anisotropic description for shocked single crystals: thermoelastic response and pure mode wave propagation [J]. Journal of Applied Physics, 2004, 96(4): 1993–1999. doi: 10.1063/1.1767294
    [105] WINEY J M, GUPTA Y M. Nonlinear anisotropic description for the thermomechanical response of shocked single crystals: inelastic deformation [J]. Journal of Applied Physics, 2006, 99(2): 023510. doi: 10.1063/1.2161414
    [106] AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
    [107] CLIFTON R J. Analysis of the laser velocity interferometer [J]. Journal of Applied Physics, 1970, 41(13): 5335–5337. doi: 10.1063/1.1658673
    [108] LLOYD J T, CLAYTON J D, AUSTIN R A, et al. Plane wave simulation of elastic-viscoplastic single crystals [J]. Journal of the Mechanics and Physics of Solids, 2014, 69: 14–32. doi: 10.1016/j.jmps.2014.04.009
    [109] LUSCHER D J, MAYEUR J R, MOURAD H M, et al. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions [J]. International Journal of Plasticity, 2016, 76: 111–129. doi: 10.1016/j.ijplas.2015.07.007
    [110] LUSCHER D J, ADDESSIO F L, CAWKWELL M J, et al. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine [J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 63–86. doi: 10.1016/j.jmps.2016.09.005
    [111] HANSEN B L, BEYERLEIN I J, BRONKHORST C A, et al. A dislocation-based multi-rate single crystal plasticity model [J]. International Journal of Plasticity, 2013, 44: 129–146. doi: 10.1016/j.ijplas.2012.12.006
    [112] SHAHBA A, GHOSH S. Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule [J]. International Journal of Plasticity, 2016, 87: 48–68. doi: 10.1016/j.ijplas.2016.09.002
    [113] LLOYD J T, CLAYTON J D, BECKER R, et al. Simulation of shock wave propagation in single crystal and polycrystalline aluminum [J]. International Journal of Plasticity, 2014, 60: 118–144. doi: 10.1016/j.ijplas.2014.04.012
    [114] BARTON N R, BENSON D J, BECKER R. Crystal level continuum modelling of phase transformations: the αϵ transformation in iron [J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(5): 707. doi: 10.1088/0965-0393/13/5/006
    [115] ADDESSIO F L, LUSCHER D J, CAWKWELL M J, et al. A single-crystal model for the high-strain rate deformation of cyclotrimethylene trinitramine including phase transformations and plastic slip [J]. Journal of Applied Physics, 2017, 121(18): 185902. doi: 10.1063/1.4983009
    [116] KNEZEVIC M, ZECEVIC M, BEYERLEIN I J, et al. Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr [J]. Acta Materialia, 2015, 88: 55–73. doi: 10.1016/j.actamat.2015.01.037
    [117] ARDELJAN M, BEYERLEIN I J, MCWILLIAMS B A, et al. Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy [J]. International Journal of Plasticity, 2016, 83: 90–109. doi: 10.1016/j.ijplas.2016.04.005
    [118] MEREDITH C S, LLOYD J T, SANO T. The quasi-static and dynamic response of fine-grained Mg alloy AMX602: an experimental and computational study [J]. Materials Science and Engineering A, 2016, 673: 73–82. doi: 10.1016/j.msea.2016.07.035
    [119] GARCÍA-GRAJALES J A, FERNÁNDEZ A, LEARY D, et al. A new strain rate dependent continuum framework for Mg alloys [J]. Computational Materials Science, 2016, 115: 41–50. doi: 10.1016/j.commatsci.2015.12.046
    [120] 潘昊, 王升涛, 吴子辉, 等. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究 [J]. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    PAN H, WANG S T, WU Z H, et al. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading [J]. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [121] CLAYTON J D. Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(2): 261–301. doi: 10.1016/j.jmps.2004.06.009
    [122] VOGLER T J, CLAYTON J D. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 297–335. doi: 10.1016/j.jmps.2007.06.013
    [123] DEMIR E, RAABE D, ZAAFARANI N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography [J]. Acta Materialia, 2009, 57(2): 559–569. doi: 10.1016/j.actamat.2008.09.039
    [124] DMITRIEVA O, DONDL P W, MÜLLER S, et al. Lamination microstructure in shear deformed copper single crystals [J]. Acta Materialia, 2009, 57(12): 3439–3449. doi: 10.1016/j.actamat.2009.03.035
    [125] HUANG H, VAN SWYGENHOVEN H. Atomistic simulations of mechanics of nanostructures [J]. MRS bulletin, 2009, 34(3): 160–166. doi: 10.1557/mrs2009.46
  • [1] 张昆汤文辉冉宪文 . 正交各向异性材料的三维动态本构模型及其在脉冲X射线热击波模拟中的应用. 高压物理学报, 2017, 31(6): 727-734. doi: 10.11858/gywlxb.2017.06.007
    [2] 丁铁张晓晴姚小虎 . 筋条形状对复合材料加筋壁板低速冲击动态响应的影响. 高压物理学报, 2017, 31(6): 769-777. doi: 10.11858/gywlxb.2017.06.012
    [3] 贾宪振胡毅亭董明荣许学忠刘家骢 . 深水爆炸冲击波作用下圆柱壳动态响应影响因素的数值模拟研究. 高压物理学报, 2008, 22(2): 208-214 . doi: 10.11858/gywlxb.2008.02.016
    [4] 徐明利张若棋张光莹 . 用元胞法研究层合材料中的应力波. 高压物理学报, 2000, 14(3): 182-188 . doi: 10.11858/gywlxb.2000.03.005
    [5] 李茂生王正言陈栋泉王晓莎 . 与密度、温度、压强以及应变率相关的弹塑性本构模型. 高压物理学报, 1992, 6(1): 54-57 . doi: 10.11858/gywlxb.1992.01.008
    [6] 胡栋韩肇元张寿齐赵玉华王炳仁陈军蔡庆军姚协成董石孙珠妹 . 炸药爆炸变形和首次破碎的研究. 高压物理学报, 2004, 18(3): 198-202 . doi: 10.11858/gywlxb.2004.03.002
    [7] 王鹏飞徐松林胡时胜 . 基于温度与应变率相互耦合的泡沫铝本构关系. 高压物理学报, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004
    [8] 吴会民卢芳云 . 一种高聚物粘结炸药和B炸药的本构关系研究. 高压物理学报, 2005, 19(2): 139-144 . doi: 10.11858/gywlxb.2005.02.007
    [9] 文鹤鸣饶伟锋 . 简支圆板在平头弹丸撞击下的变形与穿透. 高压物理学报, 2005, 19(1): 51-58 . doi: 10.11858/gywlxb.2005.01.010
    [10] 刘静楠叶常青陈开果俞宇颖沈耀 . <100> LiF高速冲击变形过程的晶体塑性有限元模拟. 高压物理学报, 2019, 33(1): 014101-1-014101-12. doi: 10.11858/gywlxb.20180551
    [11] 黄霞汤文辉蒋邦海郭弦 . 各向异性材料中二维X射线诱导热击波的数值模拟. 高压物理学报, 2011, 25(1): 41-47 . doi: 10.11858/gywlxb.2011.01.007
    [12] 朱锡李海涛牟金磊黄晓明 . 水下近距爆炸作用下船体梁的动态响应特性. 高压物理学报, 2010, 24(5): 343-350 . doi: 10.11858/gywlxb.2010.05.005
    [13] 林玉亮卢芳云卢力 . 高应变率下硅橡胶的本构行为研究. 高压物理学报, 2007, 21(3): 289-294 . doi: 10.11858/gywlxb.2007.03.012
    [14] 李平李大红宁建国经福谦 . 冲击载荷下Al2O3陶瓷的动态响应. 高压物理学报, 2002, 16(1): 22-28 . doi: 10.11858/gywlxb.2002.01.004
    [15] 李孝兰王占江 . 聚四氟乙烯动态特性的实验研究. 高压物理学报, 1990, 4(3): 210-217 . doi: 10.11858/gywlxb.1990.03.007
    [16] 李焰张向荣谭红梅刘晓玲裴明敬 . 国产PVDF压电薄膜的冲击加载及卸载响应研究. 高压物理学报, 2004, 18(3): 261-266 . doi: 10.11858/gywlxb.2004.03.011
    [17] 高宁朱志武 . 5083铝合金宽应变率实验与基于损伤的本构模型研究. 高压物理学报, 2017, 31(1): 51-60. doi: 10.11858/gywlxb.2017.01.008
    [18] 段卓平关智勇 . 冲击波中横向、纵向应力计响应初步研究. 高压物理学报, 2002, 16(4): 265-270 . doi: 10.11858/gywlxb.2002.04.005
    [19] 梁化鹏薛建锋沈培辉 . 低侵彻性枪弹的入水研究. 高压物理学报, 2018, 32(2): 025104-1-025104-6. doi: 10.11858/gywlxb.20170538
    [20] 唐志平 . 冲击相变研究的现状与趋势. 高压物理学报, 1994, 8(1): 14-22 . doi: 10.11858/gywlxb.1994.01.003
  • 加载中
图(12)
计量
  • 文章访问数:  598
  • 阅读全文浏览量:  587
  • PDF下载量:  13
出版历程
  • 收稿日期:  2019-02-20
  • 录用日期:  2019-03-25
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-06-01

晶体塑性有限元在材料动态响应研究中的应用进展

    作者简介:郑松林(1987—),男,博士,助理研究员,主要从事材料微结构演化模拟研究. E-mail:hizhengsl@foxmail.com
  • 中国工程物理研究院流体物理研究所,四川 绵阳 621999

摘要: 作为连续尺度上描述各向异性非均质材料弹塑性变形的重要模拟工具,晶体塑性有限元能够有效预测材料的宏观力学性能,在工程设计方面起着重要的作用。在实际工程应用中,许多晶体材料在高应力、高变形率、高温等极端条件下服役,此时各向异性非均匀的微介观结构演化是理解材料动态响应的关键,这给晶体塑性有限元带来了巨大的机遇和挑战。首先简要综述了晶体塑性有限元的原理和方法,然后着重介绍其在材料动态响应中的应用,最后展望其在材料动态响应模拟方面的发展方向。

English Abstract

  • 金属材料由大量晶粒构成,由于晶粒间的协调变形,材料的各向异性并不明显,因此经典的宏观塑性理论将金属视为均匀化的各向同性材料而得以广泛应用。然而,随着材料设计与应用技术的发展,经过精细加工的金属材料具有形变织构,实验发现这些材料的力学现象都是各向异性的,如强度、韧性、形状变化、应变强化、表面粗化、破坏、疲劳、损伤等性质都与方向相关。织构能够反映多晶材料由于单晶或晶界方向性引起的综合各向异性行为,连续介质的变形梯度分解理论联系织构演化与滑移剪切之间的关系,因此晶体力学性质的理论必须包含位错滑移所致剪切的晶体学各向异性本质,以及晶体方向相关的外部边界条件。早期描述晶体各向异性的模型[14]并未考虑多晶中晶粒间的力学相互作用,也未考虑复杂的边界条件,而是采用应力或应变平均化的假设来处理多晶之间的相互作用。基于此原因,以有限元近似形式的变分方法被用于处理复杂外部边界条件下晶体的各向异性塑性变形,并描述晶体内晶体学方向的微观滑移剪切机制,这种方法被称为晶体塑性有限元(Crystal Plasticity Finite-Element,CPFE)模型。

    晶体塑性变形动力学的本质源于连续介质变形速度梯度的并矢分解,反映导致微观剪切的晶体缺陷本质与宏观形变及旋转之间的联系。这意味着CPFE是集中了位错、单晶变形等相关理论及实验的物理知识[57]并将其应用到连续力学的计算工具[89],目的是发展先进的物理工程应用方法[10]。利用多种物理知识描述基本剪切系统级别的塑性流变及强化的多种本构方程赋予CPFE极大的灵活性。这些本构方程在几十年间慢慢地从经验性黏塑性方程[1112]发展到基于微观结构、包含尺度效应和界面机制的多尺度物理模型[6, 1321]。CPFE的灵活性优势不仅仅在于包括这些滑移剪切的本构规则,而且能够包含其他速度梯度并矢形式的动力学机制,如马氏体相变[2223]、孪晶[2427]以及超塑性晶界剪切[2829],尽管多种物理机制的引入增加了模型的复杂性。正由于能够作为多物理多机制的平台,因此利用平均化手段的CPFE对微观尺度和宏观尺度均可适用[30]。针对处理模型的复杂性,有限元方法将整个样品离散成多个单元,在有限空间内利用虚功原理对力平衡方程和位移协调方程进行变分求解,使得晶体塑性能够处理非常复杂的内部或外部边界条件下的晶体力学问题。这并不仅仅是计算方面的优势,而且能够追踪晶间晶内微力学相互作用的相关边界[31],对理解晶内及晶粒簇群的界面力学突变具有物理意义[32]。基于这些计算和物理上的优势,CPFE方程被集合进有限元代码或者商业解法器里的用户子程序。如此一来,CPFE成为联系微观剪切与宏观变形、处理复杂边界条件下宏微观多机制多物理问题,且能够商业化处理工程问题的虚拟力学实验室[33]

    理解金属材料在高应力、高变形率、高温等极端条件下的动态响应,对于许多技术工程应用具有关键作用,如金属切削、粉末冲击固化、车辆碰撞测试、武器装甲工程以及航空航天等。适用于宏观尺度的经典本构模型很早就被用于描述材料的应变率相关行为,并在工程上取得了很大成功[34]。这类非晶体的塑性模型有些是基于经验拟合的唯象型模型[3540],有些是基于位错的物理型模型[4146]。虽然它们能够反映晶体材料特别是多晶体的一般响应,但并未考虑具体的晶体学方向及织构等微结构因素,而这些各向异性的微结构特征又是影响材料动态响应的关键。晶体塑性模型则在利用这些本构关系及其拓展方程的基础上,结合晶体学剪切滑移的知识,考虑晶粒内部以及晶粒之间的相互作用,更物理地处理晶粒尺寸、织构及其相关微观结构对材料动态响应的影响。大多数晶体塑性模型都采用唯象型的本构关系,利用一定的流变法则和硬化率来描述滑移间的本构关系。无论在准静态还是高应变率下,这些唯象型方程都具有简单易用的优点,但其参数严重依赖经验及实验数据拟合,适用范围十分有限。随着基于位错理论的本构方程的发展,晶体塑性模型能够考虑不同应变率下的位错运动机制,如热激活向黏性拖曳机制的转变,从而能够更准确地描述极端条件下的变形行为。另外,相对于高变形率,活动位错承载变形的能力有限,此时其他机制如孪晶变形、损伤破坏等模式被激活,导致物理过程极其复杂,这也给灵活的CPFE带来了巨大的机遇。

    无论面向工程应用还是面向物理机制研究,CPFE都是有效模拟晶体材料变形的强有力工具。应变率效应下的金属材料动态响应模拟需要从唯象型模型向多物理过程模型转变。然而,动态响应下物理过程的多样性与复杂性也给CPFE方法提出了极大的挑战。本文主要介绍近年来CPFE方法在金属材料动态响应研究中的应用,探讨该方法带来的材料动态机制方面的新认识,并展望其在材料动态响应模拟方面的发展方向。

    • 虽然1943年就发现晶体材料的塑性变形是由各个滑移系上位错滑移引起的[4750],但力学有限元模拟方法仍长期只被用于各向同性材料模型。直到1982年,Peirce等[51]第一次利用CPFE研究单晶的拉伸行为,且模型只包含2个对称滑移系。随后Harren等[5253]将其拓展到包含2~3个滑移系的二维模型。1991年Becker针对三维的柱状多晶[54]和单晶[55],首次考虑了面心立方(Face-Centered Cubic,FCC)晶体的全部12个滑移系。随着计算能力的提升,越来越多的CPFE模型被用于研究复杂二维和三维晶体结构在晶粒或亚晶粒尺度上的变形问题[31, 5662]。在宏观尺度,均匀化处理方式可使CPFE考虑金属成形过程中的织构演化[6367]

      然而,上述CPFE大多数利用唯象型的本构方程,且将位错滑移视作唯一的变形机制。当遇到小尺度变形或者有界面效应时,这种框架下的CPFE将失效。另外,对于应用很广的孪晶塑性(Twinning-Induced Plasticity,TWIP)钢和相变塑性(Transformation-Induced Plasticity,TRIP)钢,除了位错滑移外,还必须考虑增加孪晶和相变所致的变形和强化机制。尺寸效应最初被引入CPFE是通过唯象型的应变梯度理论实现的[6870]。由于应变梯度可以通过几何必须位错(Geometrically Necessary Dislocations,GNDs)来描述,故新的内变量本构方程用位错密度代替应变[6, 1314, 1920, 71],使模型具有物理意义。最近的CPFE都能够引进新的变形机制,如晶界机制[6, 1314, 1920, 71]、破坏机制[72]、TWIP钢和TRIP钢里面的孪晶和相变[6, 1314,1920, 27, 71, 7374]

    • 本节将简单介绍CPFE的基础原理和方法:首先通过连续介质力学联系变形与微观剪切,进而将本构方程分为两类进行描述,最后是其他物理机制的引入。具体而详尽的阐述参考Roters等[33]的综述。本文主要关注材料动态变形中的塑性机制,对有限元的数值处理方法不作详细介绍。

    • 在连续力学中,利用变形梯度${{F}}$联系当前构型${{x}}$和参照构型${{X}}$,即${\rm d}{{x}} = {{F}}{\rm d}{{X}}$。可以引入变形中间态对整个变形进行分解,常用的分解方式为

      ${{F}} = {{{F}}_{\rm{e}}}{{{F}}_{\rm{p}}}$

      式中:${{{F}}_{\rm{e}}}$为弹性变形梯度,${{{F}}_{\rm{p}}}$为塑性变形梯度。为了对整个变形的动力学进行描述,必须引进一个描述变形梯度关于时间的变化率的物理量。变形速度可以表示为 ${{v}} = {\dot { u}}$,其中 ${{u}} = {{x}} - {{X}}$。定义速度的梯度张量为

      ${{L}} = \nabla \otimes {{v}} = {\dot { F}}{{{F}}^{ - 1}} = {{{L}}_{\rm{e}}} + {{{F}}_{\rm{e}}}{{{L}}_{\rm{p}}}{{F}}_{\rm{e}}^{ - 1}$

      式中:${{{L}}_{\rm{e}}} = {{\dot { F}}_{\rm{e}}}{{F}}_{\rm{e}}^{ - 1}$为弹性速度梯度,${{{L}}_{\rm{p}}} = {{\dot { F}}_{\rm{p}}}{{F}}_{\rm{p}}^{ - 1}$为塑性速度梯度。

      如果塑性变形基于位错滑移,则塑性速度梯度可以表示为

      ${{{L}}_{\rm{p}}} = \sum\limits_{\alpha = 1}^n {{{{\dot \gamma} }^{\alpha} }{{{m}}^{\alpha} } \otimes {{{n}}^{\alpha} }} $

      式中:${{{m}}^{\alpha} }$${{{n}}^{\alpha} }$ 分别为 $ {\alpha}$ 滑移系的滑移方向和滑移面法向的单位矢量,${{\dot \gamma} ^{\alpha} }$为此滑移系的剪切率,n为激活滑移系的个数。这样就把宏观变形和微观晶向剪切联系起来。注意到此时已经将滑移面上的位错滑移均匀化,才能利用一个剪切率来描述。

    • 本构方程主要寻求外加应力状态与剪切率的关系。现有本构方程可以分为两类——唯象型和物理型,具体分类标准基于模型采用的假设条件,例如可以粗略地以是否采用位错密度作为内变量为判断基准。

    • 塑性模型一般利用临界分切应力 $\tau _{\rm{c}}^{\alpha} $ 表示滑移面 $\alpha $ 的状态,即此面上的滑移阻力。剪切滑移率通常表示为施加在滑移上的分切应力(Schmid应力)${\tau ^{\alpha} }$与临界分切应力的函数

      ${{\dot \gamma} ^{\alpha} } = f\left( {\tau _{}^{\alpha} ,\tau _{\rm{c}}^{\alpha} } \right)$

      式中:Schmid应力表示为 ${\tau ^{\alpha} } = {{\sigma }}:{{{m}}^{\alpha} } \otimes {{{n}}^{\alpha} }$${{\sigma }}$ 为Cauchy应力张量。此方程描述流变规则。表征材料状态的 $\tau _{\rm{c}}^{\alpha} $是剪切 $\gamma $ 和剪切率 ${\dot \gamma} $ 的函数

      $\tau _{\rm{c}}^{\alpha} = g\left( {\gamma ,{\dot \gamma} } \right)$

      此方程即为硬化规则。必须注意到(5)式中剪切和剪切率没有加上标以代表特定的面,它们是总体的剪切和剪切率。

      应用最广的流变准则是Rice[11]、Hutchinson[75]以及Peirce等[51, 76]针对FCC金属体系提出的幂律形式

      ${{\dot \gamma} ^{\alpha} } = {{\dot \gamma} _0}{\left| {\frac{{\tau _{}^{\alpha} }}{{\tau _{\rm{c}}^{\alpha} }}} \right|^{\textstyle\frac{1}{m}}}{\rm sgn} \left( {\tau _{}^{\alpha} } \right)$

      式中:${{\dot \gamma} _0}$$m$ 是材料参数,分别为参考剪切率和滑移的率敏感系数;sgn为符号函数;$m \to 0$$m \to 1$为两个特殊状态,对应率无关和黏弹性。最常用的硬化模型为

      $\dot \tau _{\rm{c}}^{\alpha} = \sum\limits_{\beta = 1}^n {{h_{\alpha \beta }}\left| {{{{\dot \gamma} }^\beta }} \right|} $

      其中 ${h_{\alpha \beta }}$ 为硬化矩阵

      ${h_{\alpha \beta }} = {q_{\alpha \beta }}\left[ {{h_0}{{\left( {1 - \frac{{\tau _{\rm{c}}^\beta }}{{{\tau _{\rm{s}}}}}} \right)}^a}} \right]$

      式中:${h_0}$$a$${\tau _{\rm{s}}}$ 均为滑移硬化系数,是由所有滑移系所确定的值,基于滑移系内位错反应特征;${q_{\alpha \beta }}$ 是对潜在硬化系数的估计值,对于共面的滑移系,其取值为1.0,其他情况则取值为1.4。此关系能够经验地描述不同滑移系之间的相互作用。

      在大多数文献中,都将(6)式和(7)式作为模型的流变规则和硬化关系。但也有文献利用sinh函数替代(6)式中的幂律函数[54],有些则利用更一般的Voce方程代替(7)式[39, 59, 77]。在这些唯象型动力学方程组中,只采用了唯一的临界分切应力来描述材料的状态,而非晶格缺陷。因此,基于物理机制的本构方程在需求的推动下开始发展,以切实考虑微结构对变形的影响。

    • 不同于唯象型本构方程,基于物理的模型依赖于内变量。由于位错是承载塑性变形的主要方式,因此位错密度是最重要的微结构变量。已经有大量研究者以位错密度演化来计算流变应力[6, 14, 17,2021, 71]。下面介绍Ma等[1820]建立的应用最广泛的一种基于位错密度的模型。

      可动位错密度 $\rho _{\rm{m}}^{\alpha} $ 被用于代表滑移面 $ {\alpha}$ 上承担的部分外载塑性变形。为了可动,这些位错必须克服另两种位错的应力场:平行位错引起的穿越应力以及林位错的交错阻碍。所以需要引进另两种位错密度:与滑移面平行的平行位错密度 $\rho _{\rm{P}}^{\alpha} $ 和与滑移面垂直的林位错密度 $\rho _{\rm{F}}^{\alpha} $。基于晶体中总的不可动位错密度 $\rho _{\rm{SSD}}^{\alpha} $,可以得到

      $\rho _{\rm{F}}^{\alpha} = \sum\limits_{\beta = 1}^n {{\chi ^{\alpha \beta }}} \rho _{\rm{SSD}}^\beta \left| {\cos \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right|$

      $\rho _{\rm{P}}^{\alpha} = \sum\limits_{\beta = 1}^n {{\chi ^{\alpha \beta }}} \rho _{\rm{SSD}}^\beta \left| {\sin \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right|$

      式中:${\chi ^{\alpha \beta }}$为不同滑移面间相互作用强度,包括自作用强度、共面作用强度、交滑移强度、可动结强度、Hirth锁强度以及Lomer-Cottrell锁强度。在这些方程中,只有刃位错被视为无面外速度,其线方向为${{{t}}^\beta }$。在基于位错密度的模型中,Orowan方程被用来替代(6)式,因为它联系了剪切率与可动位错,能够将连续力学和位错物理性质耦合在一起。其方程为

      ${{\dot \gamma} ^{\alpha} } = \rho _{\rm{m}}^{\alpha} b{v^{\alpha} }$

      式中:$b$ 为位错Burgers矢量的大小,$v$ 为可动位错的平均速度。可动位错密度可利用简单的标度率给出

      $\rho _{\rm{m}}^{\alpha} = {B^*}T\sqrt {\rho _{\rm{P}}^{\alpha} \rho _{\rm{F}}^{\alpha} } $

      其中T为绝对温度,${B^*}$由下式给出

      ${B^*} = \frac{{2{k_{\rm{B}}}}}{{{c_1}{c_2}{c_3}G{b^3}}}$

      式中:${k_{\rm{B}}}$为Boltzmann常数,$G$为剪切模量,${c_1}$${c_3}$为位错密度相关的常数。假设林位错交错是率相关的过程,则可动位错速度可以定义为

      ${v^{\alpha} } = {\lambda ^{\alpha} }{\nu _{\rm{att}}}\exp \left( { - \frac{{{Q_{\rm{slip}}}}}{{{k_{\rm{B}}}T}}} \right)\sinh \left( {\frac{{\tau _{\rm{eff}}^{\alpha} {V^{\alpha} }}}{{{k_{\rm{B}}}T}}} \right){\rm sgn} \left( {{\tau ^{\alpha} }} \right)$

      式中:${\lambda ^{\alpha} }$为与林位错间距成比例的浮动距离;${Q_{\rm{slip}}}$为位错滑移的有效激活能;${V^{\alpha} } = {c_3}{\lambda ^{\alpha} }{b^2}$为激活体积;${\nu _{\rm{att}}}$为接触频率;$\tau _{\rm{eff}}^{\alpha} $是有效剪切应力,可以根据分剪切应力和穿越应力计算

      $\tau _{\rm{eff}}^{\alpha} = \left\{ \begin{aligned} & \left| {{\tau ^{\alpha} }} \right| - \tau _{\rm{pass}}^{\alpha} = \left| {{\tau ^{\alpha} }} \right| - {c_1}Gb\sqrt {\rho _{\rm{P}}^{\alpha} + \rho _{\rm{m}}^{\alpha} } \quad\quad\quad\left| {{\tau ^{\alpha} }} \right| > \tau _{\rm{pass}}^{\alpha} \\ & 0\quad\quad\quad\quad\;\;\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left| {{\tau ^{\alpha} }} \right| \leqslant \tau _{\rm{pass}}^{\alpha} \end{aligned} \right.$

      唯象型模型中的硬化规则可以利用位错密度的演化代替。为此,需要建立以单独位错反应为基础的率方程。在此应用广泛的模型中,位错密度的增加进程通过位错锁或位错对的生成而实现,恢复过程则通过非热或热的激活湮灭。

      在此简写一些率方程,如位错锁形成和非热激活湮灭分别为

      ${\dot \rho} _{\rm{SSD}}^{\alpha + } = \frac{{{c_4}}}{b}\sqrt {\rho _{\rm{F}}^{\alpha} } {{\dot \gamma} ^{\alpha} }$

      ${\dot \rho} _{\rm{SSD}}^{\alpha - } = {c_5}\rho _{\rm{SSD}}^{\alpha} {{\dot \gamma} ^{\alpha} }$

      式中:c4c5为拟合常数。

      上述基于局部位错密度的模型在处理多晶织构演化等方面非常有效[78]。然而,对于小尺度的实验现象如纳米压痕等,局域化模型很难处理其中的尺度效应。流变应力对晶粒尺寸的依赖关系最初由Hall-Petch经验方程描述[7980]。许多研究都给出了细晶强化原理,基本都是由于晶界周围形成大量塑性变形,可动位错堆积在晶界处引起滑移阻力的上升和界面处的应变梯度。应变梯度被认为是通过增加位错密度而增加滑移阻力[15]。如前所述,应变梯度与GNDs有关,唯象型模型无法处理GNDs,而基于位错的物理模型则可以轻易将GNDs当作本构框架的一部分。但引入GNDs有一个难点,即应变梯度为非局域化理论,加入GNDs将会增加方程的自由度和额外的边界条件,这极大地增加了特别是复合加载模式下的模型复杂性。Ma等[19]给出了一种可用且统一的方案。Nye位错张量[81]可以将应变密度转化为GNDs

      ${{\varLambda }} = - \frac{1}{b}{\left( {\nabla \otimes {{F}}_{\rm{p}}^{\rm T}} \right)^{\rm T}}$

      注意梯度符号是作用在参考构型上的。据此位错张量,GNDs密度的变化率为

      ${\dot \rho} _{\rm{GND}}^{\alpha} = \frac{1}{b}\left\| {\nabla \otimes \left( {{{{\dot \gamma} }^{\alpha} }{{F}}_{\rm{p}}^{\rm T}{{{n}}^{\alpha} }} \right)} \right\|$

      本构方程中,简单直接地将GNDs加入林位错和平行位错之中。为了更加方便,GNDs被分为3类:切向量平行于滑移方向${{{d}}^{\alpha} }$的螺位错、切向量分别平行于滑移面法向${{{n}}^{\alpha} }$和线方向${{{t}}^{\alpha} }$的刃位错。其表达式分别为

      ${\dot \rho} _{\rm{GNDs}}^{\alpha} = \frac{1}{b}\left[ {\nabla \otimes \left( {{{{\dot \gamma} }^{\alpha} }{{F}}_{\rm{p}}^{\rm T}{{{n}}^{\alpha} }} \right)} \right] \cdot {{{d}}^{\alpha} }$

      ${\dot \rho} _{\rm{GNDet}}^{\alpha} = \frac{1}{b}\left[ {\nabla \otimes \left( {{{{\dot \gamma} }^{\alpha} }{{F}}_{\rm{p}}^{\rm T}{{{n}}^{\alpha} }} \right)} \right] \cdot {{{t}}^{\alpha} }$

      ${\dot \rho} _{\rm{GNDen}}^{\alpha} = \frac{1}{b}\left[ {\nabla \otimes \left( {{{{\dot \gamma} }^{\alpha} }{{F}}_{\rm{p}}^{\rm T}{{{n}}^{\alpha} }} \right)} \right] \cdot {{{n}}^{\alpha} }$

      它们满足${\left( {{\dot \rho} _{\rm{GND}}^{\alpha} } \right)^2} = {\left( {{\dot \rho} _{\rm{GNDs}}^{\alpha} } \right)^2} + {\left( {{\dot \rho} _{\rm{GNDet}}^{\alpha} } \right)^2} + {\left( {{\dot \rho} _{\rm{GNDen}}^{\alpha} } \right)^2}$。将其加入林位错和平行位错之中

      $\rho _{\rm{F}}^{\alpha} = \sum\limits_{\beta = 1}^n {{\chi ^{\alpha \beta }}} \left[ {\rho _{\rm{SSD}}^\beta \left| {\cos \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right| + \rho _{\rm{GNDs}}^\beta \left| {\cos \left( {{{{n}}^{\alpha} },{{{d}}^\beta }} \right)} \right|} \right. + \left. {\rho _{\rm{GNDet}}^\beta \left| {\cos \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right| + \rho _{\rm{GNDen}}^\beta \left| {\cos \left( {{{{n}}^{\alpha} },{{{n}}^\beta }} \right)} \right|} \right]$

      $\rho _{\rm{P}}^{\alpha} = \sum\limits_{\beta = 1}^n {{\chi ^{\alpha \beta }}} \left[ {\rho _{\rm{SSD}}^\beta \left| {\sin \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right| + \rho _{\rm{GNDs}}^\beta \left| {\sin \left( {{{{n}}^{\alpha} },{{{d}}^\beta }} \right)} \right|} \right. + \left. {\rho _{\rm{GNDet}}^\beta \left| {\sin \left( {{{{n}}^{\alpha} },{{{t}}^\beta }} \right)} \right| + \rho _{\rm{GNDen}}^\beta \left| {\sin \left( {{{{n}}^{\alpha} },{{{n}}^\beta }} \right)} \right|} \right]$

      这样一来,引入GNDs描述应变梯度引起尺寸效应的模型已经建立。

      晶界能够作为位错运动的有效障碍,可动位错会在界面前端累积并造成应力集中。这些位错-界面相互作用机制很难被唯象型的模型引入;但在处理较大尺度的塑性应变时,可以利用均匀化处理手段将其引入晶体塑性理论。将晶界机制引入基于位错的本构CPFE方法主要有两种:一种将晶界视为位错不可穿越的界面[16],一种将其视为部分“透明”界面[20]。位错不可穿越晶界的假设其实即为添加晶界处的边界条件,虽然能够增强硬化,但并不能预测屈服应力的上升,即不能捕捉Hall-Petch现象。为了应对这个问题,Evers等[16]引入了晶界位错(Grain Boundary Dislocations,GBDs)表示晶界处初始的GNDs,其密度与晶界两边的晶向以及滑移系有关。另一种处理方式是将位错穿越界面视作一个热激活的概率过程,此热激活能作为可动位错滑移激活能的附加部分[20]。每个穿越事件将发生在最小可能能量假设的基础上。然而,在任意穿越事件中,进入界面的位错未必等于射出的位错,从而导致界面失配位错。这些失配位错会成为额外的障碍,必须再加入额外的穿越障碍能。一般处理方式并非严格地一对一校准此能量,更多时候利用统计的方法将失配位错视为刚化效应,具体的例子为

      ${v^{\alpha} } = {\lambda ^{\alpha} }{\nu _{\rm{att}}}\exp \left( { - \frac{{Q_{\rm{eff}}^{\alpha} }}{{{k_{\rm{B}}}T}}} \right)\sinh \left( {\frac{{\tau _{\rm{eff}}^{\alpha} {V^{\alpha} }}}{{{k_{\rm{B}}}T}}} \right){\rm sgn} \left( {{\tau ^{\alpha} }} \right)$

      (25)式与(14)式唯一的不同是用有效激活能代替了滑移激活能。此时有效激活能为$Q_{\rm{eff}}^{\alpha} = Q_{\rm{slip}}^{} + Q_{\rm{GB}}^{\alpha} $,而晶界激活能则为寻求晶界射出滑移系中的最小值。对于FCC中的[111]和[110]扭转晶界的激活能,可以参见文献[33]中的图表。

    • 以上介绍的都是基于位错机制的CPFE模型。然而,材料的塑性变形并不仅仅由位错滑移所致,还有位移型相变,例如前述的TRIP钢、TWIP钢等。这些相变与位错类似,会产生剪切,一般情况下主要讨论两种:马氏体相变[2223]和孪生变形[2427]。马氏体相变是剪切所致晶体结构发生改变,从而引起体积的变化;孪生变形则是剪切导致与基体晶向成镜面关系的孪晶。

    • 1965年Greenwood和Johnson[82]开始研究钢中的TRIP效应,发现体积膨胀引起的额外塑性变形是由于奥氏体向马氏体发生转变所致。同年,Patel和Cohen[83]发现这些相变倾向于发生在相变驱动力最大的方向上。此后,大量关于马氏体相变的本构关系被提出和发展,但大多数模型都是基于小变形框架下,这些强制假设条件会产生较大的误差,特别是单晶中的各向异性无法体现。基于晶向热力学的模型,可以考虑多相TRIP钢中的变形行为。Suiker和Turteltaub[74, 8485]利用这种相变模型处理FCC奥氏体向体心四方马氏体的转变。

      在相变机制的CPFE中,总的变形梯度不再只有弹性和塑性部分,还有相变部分${{{F}}_{\rm{tr}}}$,即

      ${{F}} = {{{F}}_{\rm{e}}}{{{F}}_{\rm{p}}}{{{F}}_{\rm{tr}}}$

      相变部分的变形梯度为

      ${{{F}}_{\rm{tr}}} = {{I}} + \sum\limits_{i = 1}^M {{\xi ^i}} {{{b}}^i} \otimes {{{d}}^i}$

      式中:${{{b}}^i}$为相变系统形状应变向量,${{{d}}^i}$为其惯习面的法向单位矢量,${\xi ^i}$为其相对于参考构型的体积分数。体积分数的演化与相变驱动力${f^i}$有关

      ${\dot \xi ^i} = \left\{ \begin{aligned} & \dot \xi _0^i\tanh \left( {\dfrac{{{f^i} - f_{\rm{cr}}^i}}{{\nu f_{\rm{cr}}^i}}} \right)\quad\quad{f^i} > f_{\rm{cr}}^i\\ & 0\quad\quad\quad\quad\quad\quad\quad\quad{f^i} \leqslant f_{\rm{cr}}^i \end{aligned} \right.$

      式中:$\dot \xi _0^i$$\nu $ 为材料相关的参数,决定相变发生的频率;$f_{\rm{cr}}^i$ 为相变的临界驱动力;总驱动力${f^i}$包括弹塑性应变、热、缺陷以及表面能引起的驱动力。这些驱动力与滑移状态及外力有关,可以类似位错机制的本构关系通过一定的硬化规则表达出来。

    • 孪晶变形是另一种承载塑性变形的有效方式。一个孪晶可以看作是母相中被剪切部分,该部分晶格取向正好与母相成镜像对称。孪晶也可看作惯习面上的非方向性剪切。在此框架下,FCC里面的孪晶面主要为$ \left\{ 111\right\}\left\langle {112} \right\rangle $类型,体心立方(Body-Centered Cubic,BCC)晶体为$\left\{112\right\}\left\langle {111} \right\rangle $,密排六方(Hexagonal Close-Packed,HCP)晶体则为$\{ {10\bar 12}\}\langle {10\bar 11}\rangle $。孪晶变形的许多物理机制仍不清楚,但其影响因素已被很多研究给出,如温度、应变率、晶粒尺寸和层错能等。由于孪晶变形在一些材料中处于重要地位,故将孪晶机制加入CPFE框架是非常必要的。最早将唯象型孪晶机制加入CPFE的是Doquet[86],尔后有Schlogl等[87]和Mecking等[88]

      一般可以利用转动矩阵 ${{Q}}$表示孪晶从初始构型变为新构型

      ${{Q}} = 2{{n}} \otimes {{n}} - {{I}}$

      式中:${{n}}$为孪晶面法向。对于总的速度梯度,还包含孪晶产生的部分

      ${{{L}}_{\rm{p}}} = \left( {1 - \sum\limits_{\beta = 1}^{{n_{\rm{t}}}} {{f^\beta }} } \right)\sum\limits_{\alpha = 1}^n {{{{\dot \gamma} }^{\alpha} }{{{m}}^{\alpha} } \otimes {{{n}}^{\alpha} }} + \sum\limits_{\beta = 1}^{{n_{\rm{t}}}} {{\gamma _{\rm{t}}}{{{\dot f}}^\beta }{{m}}_{\rm{t}}^\beta \otimes {{n}}_{\rm{t}}^\beta } $

      式中:${f^\beta }$$\beta $孪晶相的体积分数,${n_{\rm{t}}}$为孪晶系的个数,${\gamma _{\rm{t}}}$为本征孪晶剪切应变。然而(30)式并不包含孪晶相中的滑移,为此Kalidindi[24]对其进行了改写

      ${{{L}}_{\rm{p}}} = \left( {1 - \sum\limits_{\beta = 1}^{{n_{\rm{t}}}} {{f^\beta }} } \right)\sum\limits_{\alpha = 1}^n {{{{\dot \gamma} }^{\alpha} }{{{m}}^{\alpha} } \otimes {{{n}}^{\alpha} }} + \sum\limits_{\beta = 1}^{{n_{\rm{t}}}} {{\gamma _{\rm{t}}}{{{\dot f}}^\beta }{{m}}_{\rm{t}}^\beta \otimes {{n}}_{\rm{t}}^\beta } + \sum\limits_{\beta = 1}^{{n_{\rm{t}}}} {{f^\beta }} \sum\limits_{\alpha = 1}^n {{{{\dot \gamma} }^{\alpha} }{Q^\beta }{{{m}}^{\alpha} } \otimes {{{n}}^{\alpha} }{{\left( {{Q^\beta }} \right)}^{\rm T}}} $

      由于现在孪晶的物理机制尚不清晰,故只有唯象型的模型描述孪晶体积分数的演化

      ${{\dot f}^\beta } = \left\{ \begin{aligned} & {{{\dot f}}_0}{\left( {\frac{{{\tau ^\beta }}}{{\tau _{\rm{c}}^\beta }}} \right)^{\textstyle\frac{1}{{{m_{\rm{t}}}}}}}\;\;\;\;{\tau ^\beta } > 0 \\ & 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\tau ^\beta } \leqslant 0\end{aligned} \right.$

      孪晶演化符合幂律规则,类似于滑移剪切的幂律,参数的定义也使用同样的方式。硬化规则为

      $\dot \tau _{\rm{c}}^{\alpha} = {h_{\alpha {\tilde \alpha} }}\left| {{{{\dot \gamma} }^{{\tilde \alpha} }}} \right|$

      注意到这里的${\tilde \alpha} $表示只有不与滑移面共面的孪晶才会对位错形成阻碍。

    • 连续的损伤断裂力学已经能够处理一些损伤的演化,但这些方法基于已经知晓损伤的形核位置,例如预置裂纹和空洞。当损伤点在材料中随机分布时,各向同性的有限元方法能够预测剪切局域化导致损伤的排布。虽然连续力学方法能够描述特定的损伤点,但一般在不模拟损伤的情况下引入材料的本构模型,比如常用的模型即为损伤降低材料的弹性模量。在微结构层次上,已有少量CPFE从晶粒晶界的晶向性出发来模拟裂纹的扩展和孔洞的粗化[8990]。一般情况下,CPFE能够直接模拟实验观察到的损伤出现的特征微结构,并评估损伤形核和初始生长理论。具体微结构所致损伤的模拟主要包含:非均质塑性变形、界面、内聚区边界、晶界穿越、实验的断裂始发准则、损伤的应变能准则。需要考虑损伤断裂的典型材料为多孔晶体,图1所示为引入损伤机制的变形梯度张量分解示意图。

      图  1  一般多孔单晶的变形梯度分解${{F}} = {{{F}}_{\rm{e}}}{{{F}}_{\rm{p}}}{{{F}}_{\rm{d}}}$,包含可逆弹性部分${{{F}}_{\rm{e}}}$、不可逆偏量部分${{{F}}_{\rm{p}}}$以及不可逆体变部分${{{F}}_{\rm{d}}}$[91]

      Figure 1.  Schematic of a multiplicative decomposition of total macroscopic deformation gradient tensor ${{F}}$ into elastic ${{{F}}_{\rm{e}}}$, irreversible deviatoric ${{{F}}_{\rm{p}}}$, and irreversible volumetric parts ${{{F}}_{\rm{d}}}$[91]

    • CPFE模拟材料在外加力载荷作用下的响应行为,无论是准静态、低应变率还是爆炸冲击,其基础还是单晶塑性模型的力学本构行为。为此现在以本构方程是唯象型还是物理型进行分类,再对其在材料动态响应方面的应用加以介绍。由于这些本构方程只针对位错滑移,故最后再介绍存在其他机制的模型在材料动态行为模拟方面的进展。

    • 描述唯象型流变规则的方程(6)式本来就体现了剪切率(应变率)的效应关系。当率敏感因子为零时,即为率无关(Rate-independent)的本构关系,也称刚性塑性关系;当率敏感因子非零时,即为率相关(Rate-dependent)本构关系,也称黏塑性关系。与此流变规则方程类似的经典宏观本构模型已经能够考虑应力-应变关系的应变率效应,但直到有限元方法的应用才涉及晶向相关各向异性的微结构特征。Peirce等[51]最早利用有限元对率相关和率无关的单晶本构方程进行分析,发现剪切局域化受率敏感系数、应变硬化和潜在硬化因素的影响,然而这些结果都是在准静态加载条件下得到的。Zikry和Nemat-Nasser[92]利用率相关方程研究了拉伸应变率100~2000 s–1加载条件下单晶的剪切局域化特征,数值处理方面用到了特殊的五阶Runge-Kutta方法,其结果也显示率敏感性和应变率硬化对应变局域化有重要的影响。

      动态条件下,温度是影响材料响应的重要因素。Schoenfeld[93]利用单晶模型研究了多晶钽(Ta)的应变率和温度效应,其应变率在${10^3}\;{{\rm{s}}^{ - 1}}$量级,为早期应用CPFE研究高应变率响应的代表性工作。此研究模型虽然仍采用(6)式的幂律流变规则,但滑移阻力除了(7)式硬化率提供的部分外,还包括Peierls障碍,这些阻力项用一个热激活相关的系数联系起来

      $\tau _{\rm{c}}^{\alpha} = \tau _{\rm{a}}^{\alpha} + {S_{\rm{p}}}\tau _{\rm{p}}^{\alpha} + {S_{\rm{p}}}\tau _{\rm{\gamma}} ^{\alpha} $

      式中:$\tau _{\rm{a}}^{\alpha} $为远程分阻力;$\tau _{\rm{p}}^{\alpha} $为Peierls力;$\dot \tau _{\rm{\gamma}} ^{\alpha} = \displaystyle\sum\limits_{\beta = 1}^n {{h_{\alpha \beta }}\left| {{{{\dot \gamma} }^\beta }} \right|} $为硬化率相关的阻力;${S_{\rm{p}}}$${S_{\rm{\gamma}} }$是关于温度T和剪切率${{\dot \gamma} ^{\alpha} }$的函数,为热激活相关系数。引入Peierls力的本构方程能够很好地模拟Ta在不同温度下的动态响应规律,原因是Ta为BCC结构。与FCC晶体中的平面位错结构不同(Peierls力非常小),BCC晶体中的很多位错呈现非平面结构,导致其位错的启动阻力很大,因而必须加以考虑这部分滑移阻力。此后,BCC结构材料的温度和应变率相关CPFE模型中都考虑了这种非平面结构导致的滑移阻力[9496],即non-Schmid效应。

      由于具有简单实用的优势,唯象型本构方程仍不断被改进和完善,用以描述不同材料的响应特性。对于高应变率的加载情况,有些模型由低应变率下的方程直接外推得到,有些根据实验数据拟合得到,有些则是从物理机制上进行部分改进。近年来,这些应用于材料动态响应的CPFE模型主要关注极端条件下材料的非线性弹性行为以及高速位错的拖曳机制。由于高应变率下变形严重局部化,所以发展不同参照系框架下的模型也非常重要。下面主要从这3个方面加以叙述。

    • 鉴于以前的CPFE模型均应用在准静态或者应变率低于 ${10^4}\;{{\rm{s}}^{ - 1}}$的情况,Becker[97]将其应用到爆炸冲击条件下的高应力高应变率情况,其中应力高达10~100 GPa,应变率超过${10^7}\;{{\rm{s}}^{ - 1}}$。在此晶体塑性模型中,采用了率无关的流变规则,即流变应力由屈服准则决定

      $\left\{ \begin{aligned} & \tau _{}^{\alpha} - \tau _{\rm{c}}^{\alpha} = 0 \;\;\;\;{{{\dot \gamma} }^{\alpha} } \ne 0 \\ & \tau _{}^{\alpha} - \tau _{\rm{c}}^{\alpha} < 0\;\;\;\;{{{\dot \gamma} }^{\alpha} } = 0 \\ & \tau _{}^{\alpha} - \tau _{\rm{c}}^{\alpha} > 0\;\;\;\;{\rm{inaccessible}} \end{aligned} \right.$

      硬化规则未采用(7)式,而是根据幂律硬化格式给出了应变率敏感系数相关的滑移阻力表达式

      $\tau _{\rm{c}}^{\alpha} = \frac{\mu }{{{\mu _0}}}{\tau _0}\left[ {1 + {B'}{{\left( {{\bar \gamma} + {\gamma _0}} \right)}^k}} \right]{\left( {\frac{{\left| {{{{\dot \gamma} }^{\alpha} }} \right| + {{{\dot \gamma} }_{\rm{off}}}}}{{{{{\dot \gamma} }_0}}}} \right)^l}\exp \left( { - \lambda \Delta E} \right){\rm sgn}\left( {{{{\dot \gamma} }^{\alpha} }} \right)$

      式中:$\mu /{\mu _0}$为相对剪切模量,是由于压力引起的模量变化;$\tau _0^{}$为参考剪切障碍力;$B'{\text{、}}\!\!k{\text{、}}\!\!l$为材料参数;${\bar \gamma} $为时间平均的剪切;${{\dot \gamma} _{\rm{off}}}$为零应变时的偏移量;$\exp \left( { - \lambda \Delta E} \right)$为变形热效应。此模型真正的重点在于弹性变形部分,如(36)式中的剪切模量,有效地考虑了随应力增加而增加的弹性常数。弹性常数的变化采用Simmons和Wang[98]的结果,即弹性常数与压力成正比,${\rm{d}}{C_{{ij}}}/{\rm{d}}p = c_{{ij}}^*$图2给出了此模型计算的压力脉冲沿垂直于表面的方向传播的情况,结果显示波前的应力梯度有利于应变的重新分布。

      图  2  利用唯象模型模拟晶体在32 GPa压力下的变形情况:(a)为应力演化,(b)和(c)为不同时刻t的滑移率分布[97]

      Figure 2.  Deformation of the crystal under an applied pressure of 32 GPa in Ref. [97]: (a) shows the stress evolution, and (b), (c) show the rates of accumulated slip at different times ($t$)

      连续尺度的单晶模型都视弹性变形为线性的小量,然而在极端的高压力环境下,材料的可逆变形并不小。Becker[97]重点考察了弹性模量在高压力下增大的情况,其本质就是考虑了非线性弹性变形。Luscher等[99]更进一步将完整的p-V-T状态方程融合进晶体塑性模型,利用经典的内状态变量理论,能够有效应对热-弹性耦合($\Delta {T_{\rm{r}}}$)、冲击热耗散($\Delta {T_{\rm{d}}}$)、塑性热耗散($\Delta {T_{\rm{p}}}$)等导致的温度改变。在塑性本构关系上,必须将热激活因素引入(6)式以改进流变准则

      ${{\dot \gamma} ^{\alpha} } = {{\dot \gamma} _0}\exp \left[ { - \frac{E}{{{k_{\rm{B}}}T}}{{\left\langle {1 - {{\left\langle {\frac{{\left| {\tau _{}^{\alpha} } \right| - \tau _{\rm{c}}^{\alpha} }}{{\tau _{\rm{cl}}^{\alpha} }}} \right\rangle }^{{m_1}}}} \right\rangle }^{{m_2}}}} \right]{\rm sgn} \left( {\tau _{}^{\alpha} } \right)$

      式中:E为热障碍能,$\tau _{\rm{c}}^{\alpha} $由硬化方程(7)式决定,$\tau _{\rm{cl}}^{\alpha} $$\alpha $ 面上的本征晶格阻碍力。结果发现,冲击下的非线性热弹性响应与塑性变形同等重要,如图3所示,一维冲击的波前温度${T_1}$及各个温差随压力变化巨大。将模型用于描述3~110 GPa下单晶铜的变形响应,与实验结果吻合得很好。

      图  3  耦合了p-V-T状态方程的CPFE模拟一维冲击下波前温度及温差随压力的变化[99]

      Figure 3.  Temperature and contributions to temperature change behind shock front as computed in 1D uniaxial strain simulations by using coupled pVT-CPFE models[99]

    • 在准静态或低应变率情况下,位错速度较低,位错运动主要由热激活主导;在高应变率下,高速位错运动会受到黏性拖曳,如声子拖曳。由于切实关系到位错的运动机制,所以应该考虑用物理型的本构关系来引入拖曳效应,这些将在3.2节加以叙述。然而,物理型本构方程涉及的物理参数和物理过程过于繁多,在工程实验中应用并不方便。鉴于此,De等[100]在研究含能材料RDX的冲击响应时仍采用唯象型模型。首先在弹性变形部分,考虑了非线性的热弹性效应;在塑性变形部分,采用了率无关的屈服准则作为流变规则,对于滑移障碍阻力则在(36)式的基础上真正考虑了声子拖曳部分的贡献

      $\tau _{\rm{c}}^{\alpha} = \frac{\mu }{{{\mu _0}}}{\tau _0}{f_{\alpha} }\left( {{\gamma ^{\alpha} },{\bar \gamma} ,{{{\dot \gamma} }^{\alpha} },T} \right){\rm sgn}\left( {{{{\dot \gamma} }^{\alpha} }} \right)$

      式中:$f_{\alpha}^{}= f_{\alpha} ^{\rm h}f_{\alpha} ^{\rm s} + f_{\alpha} ^{\rm p}$$f_{\alpha} ^{\rm h}$$f_{\alpha} ^{\rm s}$$f_{\alpha} ^{\rm p}$分别为位错相互作用和生成、热软化和湮灭以及声子拖曳对于可动位错的影响,前两种影响因素的具体表达式为

      $f_{\alpha} ^{\rm h} = \left[ {1 + B'{{\left( {{\bar \gamma} + {\gamma _0}} \right)}^k}} \right]{\left( {\frac{{\left| {{{{\dot \gamma} }^{\alpha} }} \right| + {{{\dot \gamma} }_{\rm{off}}}}}{{{{{\dot \gamma} }_0}}}} \right)^l}$

      $f_{\alpha} ^{\rm s} = \exp \left( { - \lambda \Delta E} \right)$

      (39)式和(40)式其实就是(36)式的中间部分。(38)式与(36)式唯一的不同在于额外的影响因素$f_{\alpha} ^{\rm p}$,即高速位错所遇到的声子拖曳。在该模型中,为了吻合实验,采用基于经验的声子拖曳力

      $\tau _{\rm{p}}^{\alpha} = \tau _0^{\alpha} \left[ {1 - \exp \left( { - \frac{{{{{\dot \gamma} }^{\alpha} }}}{{{\dot \gamma} _{\rm{p0}}^{\alpha} }}} \right)} \right]$

      式中:${\dot \gamma} _{\rm{p0}}^{\alpha} = \rho _{\rm{m}}^{\alpha} {b^2}\tau _{\rm{yT}}^{\alpha} /B$$\tau _{\rm{yT}}^{\alpha} $为高温下的屈服应力,B为拖曳系数。将此模型应用到RDX时,能够捕捉到实验所观察到的弹-塑性波特征。图4所示为RDX在[111]方向受到1.25 GPa加载时的粒子速度剖面,可以看到明显分开的弹性波和塑性波、弹性波后的应力弛豫、弹性波衰退以及随着进程逐渐加大的弹-塑性波间距。

      图  4  RDX在[111]方向受到1.25 GPa加载时粒子速度剖面[100](实线是实验结果[101],虚线为模拟结果)

      Figure 4.  Particle velocity profile of $ \alpha $-RDX single crystal loaded up to 1.25 GPa along the [111] crystallographic direction (Solid lines correspond to the experimental results [101] while dashed lines correspond to the model predictions [100].)

    • 大多数CPFE都是在Lagrangean框架下建立的,在处理高应变率等极端条件下的材料响应时需要计算所有格点的变形,而此时一些结构材料的变形经常会严重局部化。鉴于此,Cazacu和Ionescu[102]构造了基于Eulerian框架的动态晶体塑性模型,在面对高应变率时有很大的优势,如图5所示等径角板牙的变形情况。此模型并非完全采用(6)式的幂律规则,而是引进了黏性系数来描述流变应变的演化情况

      图  5  利用Lagrangean框架建立的唯象CPFE模拟等径角板牙的高应变率变形:(a)几何构型,其中V为此区域外加的速度场;(b)变形率分布[102]

      Figure 5.  High strain rate deformation of equal-diameter dies simulated by the phenomenological CPFE within the Lagrangean framework. (a) shows the geometry configuration where V is the imposed velocity in the specified domains, and (b) is the deformation rate distribution [102]

      ${{\dot \gamma} ^{\alpha} } = \frac{1}{{{\eta _{\rm{s}}}}}\left( {\left| {\tau _{}^{\alpha} } \right| - \tau _{\rm{c}}^{\alpha} } \right){\rm sgn} \left( {\tau _{}^{\alpha} } \right)$

      式中:${\eta _{\rm{s}}}$即黏性系数。对于剪切阻力和剪切变形的演化,均在Eulerian框架下

      $\frac{{{\rm d} \tau _{\rm{c}}^{\alpha} }}{{\rm d}t} = \frac{{\partial \tau _{\rm{c}}^{\alpha}}}{{\partial t}} + {{v}} \cdot \nabla \tau _{\rm{c}}^{\alpha} = \sum\limits_{\beta = 1}^n {{h_{\alpha \beta}}}\left| {{{{\dot \gamma} }^\beta }} \right| $

      $\frac{{{\rm d}\gamma }}{{{\rm d}t}} = \frac{{\partial \gamma }}{{\partial t}} + {{v}} \cdot \nabla \gamma = \sum\limits_{\alpha = 1}^n {\left| {{{{\dot \gamma} }^{\alpha} }} \right|} $

      ${\eta _{\rm{s}}}$ 取特定值时,(42)式会退化成(6)式。将此模型运用到特殊结构的等径角板牙时,能够有效预测其变形情况,如图5所示。研究结果表明:即使在较低应变率下,变形局部化仍主要由黏性性质决定;而在高应变率下,塑性性质和塑性各向异性并不重要,此时处于主导地位的是惯性效应。

      Clayton[103]在描述非线性热弹性时利用对数弹性理论方法,而非Eulerian或Lagrangean理论。相对于Eulerian或Lagrangean框架,此对数框架下的非线性弹性对于蓝宝石、金刚石及石英具有更高的准确度,例如需求更高阶的弹性常数。

    • 基于唯象本构方程的模型在忽略位错物理机制的基础上,提供了简单而有效的方式模拟预测工程中遇到的材料宏观效应,其参数很多是根据经验或者实验数据拟合得到的。然而,正如3.1节所述,极端条件下材料的响应特征主要是由于位错滑移物理机制的转变,所以必须发展基于物理本质的CPFE才能更有效地捕捉材料动态响应中微观结构的变形及其对整体性能的影响。本节仍然从非线性弹性、位错拖曳机制以及参照系框架方面加以叙述。

    • Winey和Gupta[104]发展了各向异性的连续框架来描述受冲击单晶的非线性热弹性响应。而后,他们将此非线性热弹性方程应用到晶体塑性模型中,模拟受任意方向冲击的单晶中的弹性波和塑性波[105]。其方程建立在一维冲击条件下,利用Orowan方程描述基于位错滑移的剪切率,但本构关系却利用了非常强的假设。首先,各个滑移系之间的本构关系相互独立(即(11)式可以完全略去上标$\alpha $)。其次,可动位错密度只取决于当前的剪切应变和切应力

      ${\rho _{\rm{m}}} = \left( {{\rho _{\rm{m0}}} + M{\gamma ^{\rm p}}} \right)\exp \left( {\frac{{ - H{\gamma ^{\rm p}}}}{\tau }} \right)\quad\quad\quad(45)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;\;\quad\quad\quad\quad\quad\quad\quad$

      式中:${\rho _{\rm{m0}}}$为初始位错密度,M为累积因子,H为硬化常数。此位错密度累积公式只适用于中小塑性变形$\left( {{\gamma ^{\rm p}} < 30{\text{%}}} \right)$,不过一般的冲击变形都符合此条件。最后,位错速度基于当前切应力与滑移阻力

      $v = \frac{{{v_0}}}{x}\left( {\sqrt {1 + {x^2}} - 1} \right),\;\;\;x = \frac{{2b\left( {\tau - {\tau _0}} \right)}}{{B{v_0}}}\quad\quad(46)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;\;\quad\quad\quad\quad\quad\quad\quad\quad$

      式中:${v_0}$为滑移面剪切波声速,B为黏性阻尼系数,${\tau _0}$为位错启动的临界力。此塑性模型并未考虑热激活效应,滑移阻力也为常值。图6为LiF受[100]方向冲击时的纵波历史,实线为实验测量值,虚线为模拟值。图中所示的弹性波衰减是率相关、应力弛豫材料的典型响应特征。

      图  6  利用Winey-Gupta模型模拟LiF受[100]方向冲击时的纵波历史(实线为实验测量值,虚线为模拟值;曲线上方数字表示试样的厚度,单位为毫米[105]

      Figure 6.  Measured and simulated longitudinal stress histories for LiF single crystals shocked along the [100] orientation by Winey-Gupta model [105] (The solid lines are the experimental data and the dashed lines are the simulations. The numbers above the curves indicate the sample thickness in mm. Time is relative to the moment of impact.)

    • 以热激活位错滑移为基础的内变量模型能够很好地描述应变率在 ${10^4}\;{{\rm{s}}^{ - 1}}$以下的黏塑性变形。然而,在高压高应变率情况下,黏塑性流变受许多机制的控制,特别是可动位错的动态生成和阻滞效应必须加以考虑。一般认为位错运动的转变机制在 ${10^5}\;{{\rm{s}}^{ - 1}}$左右,低于此应变率时位错启动及穿越障碍是在热扰动的帮助下进行的,而高于此应变率时则由拖曳阻滞和相对论效应控制着位错的生成和连续滑移。对基于位错机制的本构模型做出代表性改进的是Austin和McDowell[106],他们将包含位错亚结构特征的本构方程应用到弱冲击(根据材料而不同,但均低于25 GPa)、应变率为104~108 s−1的情况中。在其模型的本构关系中,用(11)式的Orowan方程联系剪切率与位错速度及密度。对于位错速度,采用了Clifton[107]模型

      ${\bar v} = \frac{{\bar L}}{{{t_{\rm{w}}} + {t_{\rm{r}}}}}$

      式中:${\bar L}$为相继障碍之间的平均滑移距离,${t_{\rm{w}}}$为位错处于障碍处等待热激活的时间,${t_{\rm{r}}}$为障碍之间位错的“奔跑”速度。对于热激活跨越障碍有

      ${t_{\rm{w}}} = \frac{1}{{{\gamma_{\rm{G}}}}}\left[ {\exp \left( {\frac{{\Delta E}}{{{k_{\rm{B}}}T}}} \right) - 1} \right]$

      式中:${\gamma_{\rm{G}}}$为位错等待障碍的频率。类似于(46)式,对于某一滑移系(略去上标$\alpha $),忽略惯性效应,“奔跑”位错速度有

      ${{\bar v}_{\rm{r}}} = \frac{{{\tau _{\rm{eff}}}b}}{B},\;\;\;{\tau _{\rm{eff}}} = \sqrt {{\tau ^2} - \tau _{\rm{c}}^2} $

      (49)式中的有效应力与(15)式有所不同。黏滞系数B的表达式基于相对论效应

      $B = \frac{{{B_0}}}{{1 - {{\left( {{{{\bar v}}_{\rm{r}}}/{c_{\rm{s}}}} \right)}^2}}}$

      式中:${B_0}$为黏滞系数的本征值,${c_{\rm{s}}}$为剪切波波速。(50)式使位错速度无法超越波速。结合(48)式和(49)式,可以得到

      ${{\bar v}_{\rm{r}}} = {c_{\rm{s}}}h,\;\;\;h = \sqrt {{\xi ^2} + 1} - \xi ,\;\;\;\xi = \frac{{{B_0}{c_{\rm{s}}}}}{{2{\tau _{\rm{eff}}}b}}$

      至此,位错速度的完整表达式可以给出

      ${\bar v} = \frac{{{c_{\rm{s}}}h}}{{\left[ {\exp \left( {\Delta E/{k_{\rm{B}}}T} \right) - 1} \right]\left( {{c_{\rm{s}}}h/{v_{\rm{G}}}\bar L} \right) + 1}}$

      其中位错滑移阻力可以由Taylor关系的(15)式给出。对于位错密度的演化,考虑了位错的形核、累积、湮灭、捕获和恢复。利用此模型预测的稳定塑性波、粒子速度、波前剪切力和塑性速率、Hugoniot材料强度都与实验吻合。图7给出了此模型预测的Hugoniot塑性变形的临界剪切应力,以及与实验数据的对比。

      图  7  利用Austin- McDowell模型模拟6061-T6的Hugoniot塑性变形的临界剪切应力(数据点为实验结果;左上角给出了数据点的来源,尺寸参数表示晶粒尺寸,具体信息见文献[106])

      Figure 7.  The critical shear stress of Hugoniot plastic deformation of 6061-T6 simulated by the Austin-McDowell model (The symbols show the experimental results. The legend gives the sources of the experimental data, and the measurements show the grain sizes, please see Ref.[106] for the detail information.)

      Austin-McDowell模型有效考虑了高应变率下位错拖曳机制的问题,此后被很多研究者引用、改进和完善。Lloyd等[108]将Austin-McDowell的晶体塑性模型拓展并与高阶热弹性方程结合,获得能够体现晶体学各向异性的热动力学平面波方程。除了弹性部分,他们对塑性本构关系中不可动位错密度的描述也做了改进,即将不可动位错细分为林位错和平行位错,能够更有效地描述各向异性性质。图8所示是沿不同晶向冲击下单晶铝的粒子速度剖面,很明显地看到冲击方向对于材料高应变率响应的影响巨大。

      图  8  利用Lloyd等[108]模型模拟沿不同晶向冲击下单晶铝的粒子速度剖面

      Figure 8.  Particle velocity profile of single crystal Al shocked along different crystallographic directions simulated by the Lloyd model[108]

      Luscher等[109]在Austin- McDowell模型和Lloyd模型的基础上,考虑了非局域化的CPFEM模拟材料的冲击响应。非局域化模型主要针对非局域的位错-位错、位错-界面之间的相互作用,其中很重要的一个问题是在一定的初始及边界条件下位错密度的守恒准则。此模型在处理位错密度演化时耦合了连续位错输运方程,单晶铜的平板冲击结果说明了位错输运和位错堆积的重要性。此后该模型被用于模拟RDX的各项异性冲击响应,模拟结果与实验吻合,证明了RDX中位错主导塑性机制的重要性[110]

      高、低应变率下的位错机制有所不同,基于不同机制的CPFE有其局限性,因此寻求一个能适用于广泛应变率下较统一的模型显得非常重要。Hansen等[111]发展了一种适用于多种应变率的基于位错的CPFE方程,将位错按其速度分为3类:自由可动位错、应力才能驱动的堆积阻塞的位错、热激活才能驱动的位错碎片。高速位错不再考虑热激活因素,而考虑拖曳效应;低速位错则只考虑热激活效应。模型所用参数不是从实验中拟合得到,而是具有实际物理意义,且可以从原子模拟获取。此模型被用来研究不同应变率下铜的流变应力,并与大量实验和模拟做了对比,如图9所示,从中可以明显看到存在一个临界的转变应变率。

      图  9  大量实验和模拟得到铜的流变应力-应变率关系(红线是Hansen等的模拟,数据点是实验结果,具体见文献[111])

      Figure 9.  Flow stress versus strain rate for copper: various simulation and experimental results as indicated in the legend, and the red lines show the Hansen’s results (see Ref.[111])

      Shahba和Ghosh[112]基于Austin- McDowell模型,将低应变率的位错热激活机制与高应变率的位错拖曳机制相结合,力求建立一个统一且适用范围广的晶体塑性模型。在其模型中,位错速度被分解开来考虑,对 ${t_{\rm{w}}}$${t_{\rm{r}}}$ 进行比较,较小的被忽略掉。另外,位错密度演化中考虑了GNDs密度的贡献,能够处理尺寸效应。此模型被应用于研究Ti-7Al合金,能够捕捉到位错运动的机制转变在104${10^5}\;{{\rm{s}}^{ - 1}}$

    • 上述Lloyd等[108]发展的高应变率热弹性-塑性模型是在Lagrangian框架下获得的。而实际上在高应变率大变形下,复合的Lagrangian-Eulerian或全Eulerian热弹性理论能够更好地描述微结构的演化特征。之后,Lloyd等[113]采用Eulerian应变构建了热弹性方程,具有更快收敛的特性。此模型的模拟结果体现了初始详细的微观结构对于材料的高应变率变形具有重要影响。

    • 位错是承载塑性变形的主要方式,但却不是唯一的方式,特别是在极端条件下。在高应变率条件下,塑性变形随时间快速变化,位错萌生、运动以及湮灭等活动受位错本身缺陷性质的控制,从而导致其对塑性变形的贡献不足。此时,其他变形机制如相变机制、孪晶机制就会发挥巨大的作用。然而在更极端的情况下,材料以损伤破坏的形式对快速变形作出响应。本节将介绍引入这些额外变形机制的CPFE在材料动态响应中的进展。

    • 如2.4.1节所述,塑性模型已经能够有效引入相变机制,相变部分的变形梯度是基于马氏体相变理论得到的,这些模型已经广泛用于准静态变形模拟。对于高应变率情况下的变形模拟,Barton等[114]在处理铁冲击响应时考虑了$\alpha \to \varepsilon $相变。在此模型中:塑性部分采用唯象型的本构方程;对于相变部分,其相变驱动力包括机械力、基于热的化学自由能的改变、各组分之间的相互作用3部分。模拟结果显示变形机制包含相变和弹塑性变形,与实验结果相吻合。

      最近,Addessio等[115]发展了高应变率下单晶RDX的塑性模型。此模型包含了非线性热弹性、相变以及塑性滑移,能考虑大变形和各向异性性质。塑性滑移部分采用引入热激活现象的唯象本构方程;相变部分基于马氏体相变理论发展而来,主要考虑了$\alpha $多形体向$\gamma $多形体的转变。当处于相变临界压力之上时,模拟结果能够有效描述实验观察的现象。

    • 不同于FCC和BCC,HCP金属中经常见到孪晶。孪晶机制已被引入晶体塑性模型以研究HCP金属的变形机制。然而,应变率对HCP孪晶变形影响机制的相关研究最近才发展开来。

      Knezevic等[116]利用实验和晶体塑性模型研究应变率及温度对HCP锆中主要和次要孪晶系统的影响,温度为76~673 K,应变率为0.001~4500 s–1。在塑性变形部分采用了唯象型的幂律定则作为流变规则。通过模拟发现,主要和次要孪晶系统的选择基于加载方向、温度和应变率。但其中的原因并非孪晶变形对应变率敏感,而是由于塑性滑移的应变率敏感性。

      由于镁合金的广泛应用,利用引入孪晶机制的CPFE研究镁合金的动态响应更受关注。Ardeljan等[117]建立了多尺度的晶体塑性模型:在介观尺度将速度梯度分解为塑性部分和孪晶部分,宏观尺度的变形则利用Taylor形式的均匀化处理;塑性部分和孪晶变形部分的流变规则都采用唯象型的幂律定则。他们利用此模型研究了77~423 K、10−4~3000 s−1情况下AZ31镁合金的微结构演化和力学响应,发现应力-应变曲线、孪晶体积分数和织构演化都与实验现象吻合,且各个变形系统对应变率和温度并不十分敏感。Meredith等[118]利用率相关的本构方程描述非基面滑移,率无关的本构方程描述孪晶系统和基面滑移,将模型用于研究AMX602镁合金的准静态和动态响应,并与实验作比较,结果也显示孪晶变形对应变率不敏感。García-Grajales等[119]采用新的应变率相关模型研究了AZ31镁合金的准静态和动态响应,模型中考虑了所有滑移系和孪晶系统的率相关性,准静态条件下的结果与率无关模型吻合,而高应变率下能够准确描述变形系统的率敏感性,收敛性亦被证实。

      最近潘昊等[120]研究了金属铍受冲击时孪晶对其加卸载动力学性能的影响,与上述模型不同的是,此CPFE模型考虑了非线性的热弹性变形,结果发现,非线弹性变形过程是导致材料准弹性卸载的主要原因。图10给出了加卸载过程中的孪晶份额变化,发现卸载过程也能导致孪晶份额的增长。

      图  10  Be材料冲击加卸载下的孪晶体积份额分布[120]

      Figure 10.  Fraction of twinning in Be materials in the impact loading and unloading[120]

    • 损伤破坏也是材料动态响应的重要形式。现阶段利用CPFE模型研究材料在中高应变率下的破坏时,主要考虑的是界面破坏和孔洞的演化。下面围绕这两点叙述最近的相关进展。

      Clayton[121]将界面破坏机制引入CPFE来研究钨合金在高应变率下的拉伸变形。该模型中:热弹性和唯象型塑性本构关系能够捕捉到有限变形、应变率效应、热膨胀、热软化、热传导和弹性产热等典型动态现象,内聚区模型描述钨-钨晶界以及钨-基体界面的破坏,而晶粒内部的破坏则被忽略。结果发现,晶粒取向对于破坏机制和等效刚度有显著的影响。Vogler和Clayton[122]在此模型的基础上结合实验研究了不同冲击速度下钨合金的动态响应。虽然实验与数值模拟很难在同一尺度上实现,但是他们力求在微结构特征上进行两者的对比。通过比较实验和模拟结果,证实了晶间断裂是材料破碎的重要机制,图11即为晶界破坏的模拟结果。

      图  11  CPFE模拟钨合金中的冲击破碎现象[122]

      Figure 11.  Impact fracture in tungsten alloy simulated by CPFE models[122]

      Nguyen等[91]为单晶动态韧性断裂发展了第一个基于位错的CPFE模型,并将其应用到商业的有限元软件包中。其晶体塑性部分基于Lloyd等[113]建立的单晶位错黏塑性模型,能够考虑动态变形中运动位错的声子拖曳效应和相对论效应。损伤演化基于孔洞生长,且受微惯性和位错动力学、位错亚结构演化的控制;受益于孔洞动力学的半解析解,近似方程极大地增强了计算的效率。晶体塑性和动态孔洞生长的耦合通过位错结构和孔隙率演化实现。此耦合模型能够描述位错林交错和高速位错对孔洞生长的本征阻碍作用。

    • 相较于宏观动态本构模型,CPFE能够从微结构演化出发研究材料的动态响应。很多材料的动态各向异性就是源于晶体结构之间的晶向关系及其导致的织构特征,而CPFE能够从各个滑移系的滑移剪切与宏观变形的关系出发处理微观至宏观的变形特征,是研究材料动态响应的强有力工具。CPFE具有极大的灵活性,能够有效引入其他变形机制,如孪晶、相变和损伤失效机制,而这些其他机制在动态变形中起到非常重要的作用,特别是在高速冲击等极端情况下。唯象型的CPFE模型虽然缺乏物理机制,但简单易解,在工程应用方面非常有效。物理型的CPFE模型则能够揭示材料应变率效应的物理本质,解释材料动态响应的一般现象,有利于材料的设计和制造。

      基于位错剪切滑移的CPFE对于材料的动态响应主要集中在非线性热弹性、位错拖曳机制和非Lagrangean模型框架这3方面。高压高应变率使得弹性变形不再为小量,且热效应明显,这对于材料的变形影响很大。高应变率下位错速度极高,位错滑移由热激活机制控制转变为位错拖曳机制,需要对基于位错的物理型CPFE模型进行改进和完善。对于具有特殊结构的材料,高应变率下变形局域化严重,基于Eulerian框架的CPFE模型比Lagrangean框架下的模型更具优势。另一方面,高应变率下位错承载塑性变形的能力有限,此时其他变形机制被激活,将相变、孪晶和损伤破坏等物理过程耦合到位错滑移的CPFE模型中是必需的。

      虽然近年来CPFE模型在研究材料的动态响应方面取得了较大进展,但仍然存在很多难题和挑战,主要可归纳为两方面:本构关系背后物理机制相关研究,与实验或工程结合方面的难题。

      传统唯象型模型缺乏对物理机制的足够认识,而且高、低应变率下的物理过程不尽相同,因此必须发展物理型模型。基于位错的模型虽然能够认识到高、低速位错阻力的转变,但目前仍缺乏对高速位错的动力学机制的全面认识,例如晶界处位错的形核[123125]、高速位错的交错作用机制及交滑移机制的改变、非惯习面的激活等。而且材料动态变形经常包含其他变形机制,而现有的孪晶等机制均基于现象型描述,缺乏物理基础,对这些孪晶和位错微结构相互作用的研究更加困难。动态损伤失效是极端条件下材料的重要问题,但其失效破坏准则十分复杂,这也是限制CPFE模型在动态响应方面发展的重要因素。解决这些背后物理机制问题的有效方式需要更低尺度的模拟为物理型CPFE模型提供支撑,这就涉及到多尺度模拟问题,以及低尺度向高尺度机制和参数传递的均匀化问题。

      与为了探索背后的物理机制而向低尺度模拟结合相反,为了实现实验比较且能够有效服务于工程实践,则需要与宏观尺度模型相耦合。CPFE方法本来就是横跨微结构尺度和宏观尺度的多尺度模拟工具,但也涉及到均匀化的问题。唯象型CPFE模型由于具有模型简单且数值化计算效率高的特点,容易集成到各种商业软件中,因此应该受到同样的重视和发展,然而合理处理唯象型与动态物理型CPFE模型的结合关系也是未来应该关注的难点之一。

参考文献 (125)

目录

    /

    返回文章
    返回