压力对纯的和含硫化亚铁的橄榄石电导率影响的实验研究

刘长财 胡海英 代立东 孙文清

刘长财, 胡海英, 代立东, 孙文清. 压力对纯的和含硫化亚铁的橄榄石电导率影响的实验研究[J]. 高压物理学报, 2019, 33(5): 051201. doi: 10.11858/gywlxb.20180674
引用本文: 刘长财, 胡海英, 代立东, 孙文清. 压力对纯的和含硫化亚铁的橄榄石电导率影响的实验研究[J]. 高压物理学报, 2019, 33(5): 051201. doi: 10.11858/gywlxb.20180674
LIU Changcai, HU Haiying, DAI Lidong, SUN Wenqing. Experimental Study on the Effect of Pressure on the Electrical Conductivity of Pure and Iron Sulfide-Bearing Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051201. doi: 10.11858/gywlxb.20180674
Citation: LIU Changcai, HU Haiying, DAI Lidong, SUN Wenqing. Experimental Study on the Effect of Pressure on the Electrical Conductivity of Pure and Iron Sulfide-Bearing Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051201. doi: 10.11858/gywlxb.20180674

压力对纯的和含硫化亚铁的橄榄石电导率影响的实验研究

doi: 10.11858/gywlxb.20180674
基金项目: 国家自然科学基金(41772042,41774099,41474078);中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC009);国家重点研究发展项目(2016YFC0601101)
详细信息
    作者简介:

    刘长财(1992-),男,硕士研究生,主要从事高温高压下矿物岩石电学性质研究. E-mail:liuchangcai@mail.gyig.ac.cn

    通讯作者:

    胡海英(1983-),女,博士,副研究员,主要从事高温高压下矿物岩石物理性质研究. E-mail:huhaiying@vip.gyig.ac.cn

  • 中图分类号: P319.2

Experimental Study on the Effect of Pressure on the Electrical Conductivity of Pure and Iron Sulfide-Bearing Olivine

  • 摘要: 在YJ-3000 t紧装式六面顶大腔体压机上,用Solartron-1260阻抗/增益-相位分析仪,在1~3 GPa、723~1273 K的条件下,原位测量了纯的和含15%(质量分数)FeS的橄榄石电导率。实验结果表明:在实验温度范围内,含15% FeS的橄榄石电导率比纯橄榄石的电导率高2~3个数量级,且电导率值在0.1~10 S/m范围内;纯的和含15% FeS的橄榄石电导率都随着温度的增加而增大,但是纯的橄榄石电导率对温度的敏感性更强;纯的和含15% FeS的橄榄石电导率随压力变化表现出相反的特性,随着压力的升高,纯橄榄石电导率微弱地降低,而含15% FeS的橄榄石电导率显著地增加。由含15% FeS的橄榄石电导率对温度、压力的效应以及实验获得的活化焓可知,15% FeS在橄榄石中形成了相互连通的网络,主导着橄榄石的导电过程。

     

  • 图  实验样品组装图

    Figure  1.  Experimental setup for electrical conductivity measurements

    图  (a)纯橄榄石和(b)含15% FeS的橄榄石的背散射图

    Figure  2.  Backscattered electron images of (a) pure olivine and (b)15% FeS–bearing olivine

    图  不同温度压力条件下纯橄榄石和含15% FeS的橄榄石复阻抗谱的对比

    Figure  3.  Comparison of complex impedance spectra of pure olivine and 15% FeS–bearing olivine under different temperature and pressure conditions

    图  纯的和含15% FeS橄榄石的电导率对数与温度倒数的关系

    Figure  4.  Logarithm of electrical conductivity reciprocal temperature for pure olivine and 15% FeS–bearing olivine at different pressures

    图  活化焓与压力的关系

    Figure  5.  Activation enthalpy versus pressure

    表  1  样品电导率的Arrhenius关系拟合参数

    Table  1.   Fitted parameters of Arrhenius relation for the electrical conductivity of samples

    Samplep/GPaT/Klg $\sigma_0 $$\sigma_0 $/(S∙m−1)${\Delta H}/{\rm{eV}}$${\gamma^2}$
    1723–12732.53338.841.180.9913
    Olivine2723–12731.96 91.201.110.9781
    3723–12731.05 11.221.030.9867
    1723–12730.47 2.950.200.9953
    FeS-bearing olivine2723–11731.73 53.700.290.9802
    3723–10732.78602.560.390.9845
     Note: ${\gamma}^2 $—adjust R-square.
    下载: 导出CSV
  • [1] RINGWOOD A E. Composition and petrology of the Earth’s mantle [M]. New York: McGraw-Hill, 1975.
    [2] IRIFUNE T, RINGWOOD A E. Phase-transformations in a harzburgite composition to 26 GPa: implication for dynamical behavior of the subducting slab [J]. Earth and Planetary Science Letters, 1987, 86(2/3/4): 365–376.
    [3] YOSHINO T, WALTER M J, KATSURA T. Core formation in planetesimals triggered by permeable flow [J]. Nature, 2003, 422(6928): 154–157. doi: 10.1038/nature01459
    [4] YOSHINO T, WALTER M J, KATSURA T. Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements:implications for core formation in terrestrial planets [J]. Earth and Planetary Science Letters, 2004, 222(2): 625–643. doi: 10.1016/j.jpgl.2004.03.010
    [5] WANG D J, KARATO S I, JIANG Z T. An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates [J]. Geophysical Research Letters, 2013, 40(10): 2028–2032. doi: 10.1002/grl.50471
    [6] BAGDASSAROV N, GOLABEK G J, SOLFERINO G, et al. Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements [J]. Earth and Planetary Science Letters, 2009, 177(3/4): 139–146.
    [7] WATSON H C, ROBERTS J J, TYBURCZY J A. Effect of conductive impurities on electrical conductivity in polycrystalline olivine [J]. Geophysical Research Letters, 2010, 37: L02302.
    [8] WATSON H C, ROBERTS J J. Connectivity of core forming melts: experimental constraints from electrical conductivity and X-ray tomography [J]. Physics of the Earth and Planetary Interiors, 2011, 186(3/4): 172–182.
    [9] ZHANG Z, POMMIER A. Electrical investigation of metal-olivine systems and application to the deep interior of mercury [J]. Journal of Geophysical Research–Planets, 2017, 122(12): 2702–2718. doi: 10.1002/2017JE005390
    [10] OMURA K, KURITA K, KUMAZAWA M. Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures [J]. Physics of the Earth and Planetary Interiors, 1989, 57(3/4): 291–303.
    [11] XU Y S, SHANKLAND T J, DUBA A G. Pressure effect on electrical conductivity of mantle olivine [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149–161.
    [12] DAI L D, KARATO S I. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions [J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56. doi: 10.1016/j.pepi.2014.03.010
    [13] DAI L D, HU H Y, LI H P, et al. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite and geophysical implications [J]. Geochemistry Geophysics Geosystems, 2016, 17(6): 2394–2407. doi: 10.1002/2016GC006282
    [14] HU H Y, DAI L D, LI H P, et al. Influence of dehydration on the electrical conductivity of epidote and implications for high–conductivity anomalies in subduction zones [J]. Journal of Geophysical Research–Solid Earth, 2017, 122(4): 2751–2762. doi: 10.1002/2016JB013767
    [15] SHI C Y, ZHANG L, YANG W G, et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions [J]. Nature Geosciences, 2013, 6(11): 971–975. doi: 10.1038/ngeo1956
    [16] ROBERTS J J, TYBURCZY J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport [J]. Physics and Chemistry of Miners, 1993, 20(1): 19–26.
    [17] HIRAGA T, ANDERSON I M, KOHLSTEDT D L. Grain boundaries as reservoirs for incompatible elements in the Earth’s mantle [J]. Nature, 2004, 427(6976): 699–703. doi: 10.1038/nature02259
    [18] DAI L D, LI H P, HU H Y, et al. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high temperature, high-pressure, and different oxygen fugacity conditions [J]. Journal of Geophysical Research–Solid Earth, 2008, 113(B12): B12211. doi: 10.1029/2008JB005820
    [19] TERASAKI H, FROST D J, RUBIE D C, et al. The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation [J]. Earth and Planetary Science Letters, 2005, 232(3/4): 379–392.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  6388
  • HTML全文浏览量:  3250
  • PDF下载量:  21
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-01-09

目录

    /

    返回文章
    返回