有机玻璃-空气层结构对爆炸水池水下爆炸地基振动的影响

汪泉 汤有富 李志敏 宫婕 程扬帆 刘上豪 李成孝

引用本文:
Citation:

有机玻璃-空气层结构对爆炸水池水下爆炸地基振动的影响

    作者简介: 汪泉(1980—), 男, 博士, 副教授, 主要从事爆炸力学研究.E-mail:wqaust@163.com;
  • 基金项目: 安徽省博士后基金项目 2014B035
    中国博士后基金面上项目 2014M561808
    国家自然科学基金 11502001

  • 中图分类号: O383.1

Influence of Plexiglass-Air Interlayer Structure on Foundation Vibration of Small Pool Underwater Explosion

  • CLC number: O383.1

  • 摘要: 为了研究有机玻璃-空气层结构对水下爆炸振动的影响, 采用NUBOX-6016爆破振动测试仪监测小水池(直径5.5 m、高3.62 m)中该结构下水下爆炸引起的地基振动信号, 研究不同空气层厚度对最大振动速度的影响; 基于Matlab软件编写相关程序对测得的振动信号进行Hilbert-Huang变换(HHT), 分析不同空气层厚度对振动信号全局频率的影响。结果表明:对于有机玻璃-空气层结构, 随着空气层厚度的增加, 最大振动速度呈先减小后增大的趋势, 当空气层厚度为120 mm时隔振效果最佳; 通过对振动信号的HHT分析得到全局频率所对应的幅值, 5~15 Hz低频区间段的幅值衰减较明显, 且振动作用时间缩短, 能够有效防止水下爆炸与建/构筑物之间产生共振现象。所得试验结果及分析对水下爆破工程防护及军事舰艇防雷仓结构设计等具有一定参考价值。
  • 图 1  有机玻璃-空气层结构

    Figure 1.  Picture of plexiglass-air interlayer structure

    图 2  振动测试系统(1.爆炸水池; 2.固定架; 3.8号标准雷管; 4.空气隔层; 5.发爆器; 6.1#、2#、3#测振仪)

    Figure 2.  Vibration test system (1.Explosion pool; 2.Fixed mount; 3.Detonator; 4.Air interlayer; 5.Initiator; 6.1#, 2#, 3# vibration measurer)

    图 3  不同厚度空气层对各测点振速的影响

    Figure 3.  Influence of different thicknesses of air interlayer on vibration velocity

    图 4  不同厚度水隔层对各测点振速的影响

    Figure 4.  Influence of different thicknesses of water interlayer on vibration velocity

    图 5  原始振动信号

    Figure 5.  Original vibration signal

    图 6  EMD分解后得到各IMF分量

    Figure 6.  IMF components by EMD decomposition

    图 7  1 m处充80 mm水隔层垂向振动Hilbert谱

    Figure 7.  Vertical vibration Hilbert spectrum of the 80 mm water-filled interlayer at 1 m

    图 8  不同空气层厚度条件下的垂向振动Hilbert谱

    Figure 8.  Hilbert spectrum of vertical vibration of different thicknesses of air interlayer

    表 1  不同距离、不同厚度空气层对水下爆炸振动的影响

    Table 1.  Influence of distances and thickness of air interlayer on underwater explosion vibration

    Distance/m Direction Main vibration frequency/Hz Maximum vibration velocity/(cm·s-1)
    ∅40 mm ∅80 mm ∅120 mm ∅160 mm ∅40 mm ∅80 mm ∅120 mm ∅160 mm
    1 z 56.763 56.763 56.763 56.763 0.086 0.070 0.054 0.070
    2 z 56.763 56.763 56.763 44.556 0.118 0.097 0.082 0.101
    3 z 56.763 56.763 56.763 56.763 0.080 0.071 0.061 0.086
    下载: 导出CSV

    表 2  不同距离、不同厚度水隔层对水下爆炸振动的影响

    Table 2.  Influence of distances and thickness of water interlayer on underwater explosion vibration

    Distance/m Direction Main vibration frequency/Hz Maximum vibration velocity/(cm·s-1)
    ∅40 mm ∅80 mm ∅120 mm ∅160 mm ∅40 mm ∅80 mm ∅120 mm ∅160 mm
    1 z 62.256 62.256 62.256 56.763 0.086 0.169 0.184 0.185
    2 z 62.256 62.256 62.256 62.256 0.155 0.145 0.160 0.161
    3 z 62.256 62.256 62.256 62.256 0.101 0.097 0.107 0.116
    下载: 导出CSV

    表 3  信号经EMD分解后相关参数

    Table 3.  Related parameters of the signal by EMD decomposition

    IMF Variance Proportion/%
    C1 0 1.646 3
    C2 0 0.862 9
    C3 0 0.626 8
    C4 0.000 1 70.307 9
    C5 0 20.200 7
    C6 0 2.208 9
    C7 0 1.254 8
    C8 0 1.081 4
    C9 0 1.719 6
    C10 0 0.015 0
    C11 0 0.060 6
    C12 0 0.015 0
    下载: 导出CSV
  • [1] 库尔·P. 水中爆炸[M]. 罗耀杰, 等译. 北京: 国防工业出版社, 1960.
    COLE P. Underwater explosion[M]. Translated by LUO Y J, et al. Beijing: National Defense Industry Press, 1960.
    [2] RAJENDRAN R, LEE J M.Blast loaded plates[J].Marine Structures, 2009, 22(2):99-127. doi: 10.1016/j.marstruc.2008.04.001
    [3] 张社荣, 孔源, 王高辉.水下和空中爆炸冲击波传播特性对比分析[J].振动与冲击, 2014, 33(13):148-153.
    ZHANG S R, KONG Y, WANG G H.Comparative analysis on propagation characteristics of shock wave induced by underwater and air explosions[J].Journal of Vibration and Shock, 2014, 33(13):148-153.
    [4] 高建华, 陆林, 何洋扬.浅水中爆炸及其破坏效应[M].北京:国防工业出版社, 2010.
    Gao J H, LU L, HE Y Y.Explosion and its damage effect in shallow water[M].Beijing:National Defense Industry Press, 2010.
    [5] WANG G H, ZHANG S R, YU M, et al.Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries[J].Applied Ocean Research, 2014, 46(2):40-53.
    [6] PETROV N V, SCHMIDT A A.Multiphase phenomena in underwater explosion[J].Experimental Thermal and Fluid Science, 2015, 60:367-373. doi: 10.1016/j.expthermflusci.2014.05.008
    [7] 樊自建, 沈兆武, 马宏昊, 等.空气隔层对水中冲击波衰减效果的实验研究[J].中国科学技术大学学报, 2007, 37(10):1306-1311. doi: 10.3969/j.issn.0253-2778.2007.10.025
    FAN Z J, SHEN Z W, MA H H, et al.Experimental study on attenuation of underwater shock wave by air interlayer[J].Journal of University of Science and Technology of China, 2007, 37(10):1306-1311. doi: 10.3969/j.issn.0253-2778.2007.10.025
    [8] 贾虎, 郑伟花, 罗强, 等.爆炸气泡帷幕对水中冲击波能量的衰减特性[J].含能材料, 2015, 23(10):1015-1019. doi: 10.11943/j.issn.1006-9941.2015.10.018
    JIA H, ZHENG W H, LUO Q, et al.Attenuation characteristics of underwater explosion bubble curtain on the shock[J].Chinese Journal of Energetic Materials, 2015, 23(10):1015-1019. doi: 10.11943/j.issn.1006-9941.2015.10.018
    [9] 贾虎, 沈兆武.空气隔层对水中冲击波的衰减特性[J].爆炸与冲击, 2012, 32(1):61-66. doi: 10.11883/1001-1455(2012)01-0061-06
    JIA H, SHEN Z W.An investigation into attenuation of underwater shockwave by air interlayer[J].Explosion and Shock Waves, 2012, 32(1):61-66. doi: 10.11883/1001-1455(2012)01-0061-06
    [10] 寇晓枫, 王高辉, 卢文波, 等.空气隔层对水下爆炸冲击波的缓冲效应[J].振动与冲击, 2017, 36(3):7-13.
    KOU X F, WANG G H, LU W B, et al.Mitigation effects of air interlayer on underwater explosion shock wave[J].Journal of Vibration and Shock, 2017, 36(3):7-13.
    [11] 姚熊亮, 杨文山, 初文华, 等.水中空气隔层衰减冲击波性能研究[J].高压物理学报, 2011, 25(2):165-172. doi: 10.11858/gywlxb.2011.02.013
    YAO X L, YANG W S, CHU W H, et al.Research on performance of the underwater air buffer weakening shock wave[J].Chinese Journal of High Pressure Physics, 2011, 25(2):165-172. doi: 10.11858/gywlxb.2011.02.013
    [12] 姚熊亮, 刘文韬, 张阿漫, 等.水下爆炸气泡及其对结构毁伤研究综述[J].中国舰船研究, 2016, 11(1):36-45.
    YAO X L, LIU W T, ZHANG A M, et al.Review of the research on underwater explosion bubbles and the corresponding structural damage[J].Chinese Journal of Ship Research, 2016, 11(1):36-45.
    [13] 刘欣, 顾文彬, 陈学平.气泡帷幕对水中冲击波衰减特性的数值模拟研究[J].爆破, 2015, 32(3):79-84.
    LIU X, GU W B, CHEN X P.Numerical simulation study of attenuation characteristics of water shock wave under bubble curtain[J].Blasting, 2015, 32(3):79-84.
    [14] 汤有富, 汪泉, 朱恺波, 等.基于HHT变换的小水池水下爆炸振动分析[J].工程爆破, 2017, 23(1):29-33.
    TANG Y F, WANG Q, ZHU K B, et al.Underwater explosion vibration analysis based on HHT transform in small pond[J].Engineering Blasting, 2017, 23(1):29-33.
    [15] 张义平. 爆破震动信号的HHT分析与应用研究[D]. 长沙: 中南大学, 2006.
    ZHANG Y P. HHT analysis and its application of blasting vibration signals[D]. Changsha: Central South University, 2006.
    [16] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454(1971): 903-995.
    [17] PENG Z K, PETER W T, CHU F L.An improved Hilbert-Huang transform and its application in vibration signal analysis[J].Journal of Sound and Vibration, 2005, 286(1):187-205.
    [18] 张立, 汪大立.水下爆炸炸药能测量消除边界效应的研究[J].爆破器材, 1995(2):1-6.
    ZHANG L, WANG D L.A study on elimination of boundary effects in underwater explosion testing of explosive[J].Explosive Materials, 1995(2):1-6.
  • [1] 刘丽滨李海涛刁爱民王晓强 . 水下爆炸下有限尺度平板的载荷特性及结构响应试验研究. 高压物理学报, 2018, 32(5): 055101-1-055101-8. doi: 10.11858/gywlxb.20180516
    [2] 罗泽立周章涛毛海斌刘建湖 . 水下爆炸强冲击波与平板结构相互作用的理论分析方法. 高压物理学报, 2017, 31(4): 443-452. doi: 10.11858/gywlxb.2017.04.013
    [3] 杨莉汪玉黄超汪斌 . 不同水底介质对有限域中装药沉底爆炸特性的影响. 高压物理学报, 2012, 26(5): 545-550. doi: 10.11858/gywlxb.2012.05.010
    [4] 黄超汪斌刘仓理张阿漫姚熊亮 . 非球形水下爆炸气泡坍塌机制. 高压物理学报, 2012, 26(5): 501-507. doi: 10.11858/gywlxb.2012.05.004
    [5] 李万张志华陈沧海刘天华 . 水下爆炸毁伤水下目标的能量分布特征. 高压物理学报, 2012, 26(5): 537-544. doi: 10.11858/gywlxb.2012.05.009
    [6] 王兵许厚谦谭俊杰 . 运动网格上的水下爆炸数值模拟方法. 高压物理学报, 2008, 22(3): 291-297 . doi: 10.11858/gywlxb.2008.03.012
    [7] 梁龙河曹菊珍王元书 . 水下爆炸特性的一维球对称数值研究. 高压物理学报, 2002, 16(3): 199-203 . doi: 10.11858/gywlxb.2002.03.007
    [8] 牟金磊朱锡李海涛黄晓明 . 炸药水下爆炸能量输出特性试验研究. 高压物理学报, 2010, 24(2): 88-92 . doi: 10.11858/gywlxb.2010.02.002
    [9] 李梅魏继锋王树山马峰 . 深水域近水面水下爆炸水柱形态及演变实验研究. 高压物理学报, 2013, 27(1): 63-68. doi: 10.11858/gywlxb.2013.01.009
    [10] 倪小军马宏昊沈兆武李磊 . 泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究. 高压物理学报, 2014, 28(2): 175-182. doi: 10.11858/gywlxb.2014.02.007
    [11] 李海涛朱石坚刁爱民何其伟 . 水下爆炸气泡作用下梁中垂损伤及流场变化特性. 高压物理学报, 2012, 26(5): 494-500. doi: 10.11858/gywlxb.2012.05.003
    [12] 陈卫东杨文淼张帆 . 基于物质点法的水下爆炸冲击波数值模拟. 高压物理学报, 2013, 27(6): 813-820. doi: 10.11858/gywlxb.2013.06.004
    [13] 曹威何中其陈网桦 . TNT后燃反应的水下爆炸实验研究与数值模拟. 高压物理学报, 2014, 28(4): 443-449. doi: 10.11858/gywlxb.2014.04.009
    [14] 李海涛朱锡黄晓明牟金磊 . 水下爆炸冲击波作用下空化区域形成的特性研究. 高压物理学报, 2008, 22(2): 181-186. doi: 10.11858/gywlxb.2008.02.019
    [15] 樊自建沈兆武廖学燕刘原栋 . 圆柱形水下爆炸实验容器壁部强度设计研究. 高压物理学报, 2008, 22(4): 402-408 . doi: 10.11858/gywlxb.2008.04.011
    [16] 崔杰李世铭黄超姚熊亮张阿漫 . 射流冲击模型在水下爆炸实验中的应用研究. 高压物理学报, 2012, 26(5): 523-530. doi: 10.11858/gywlxb.2012.05.007
    [17] 王长利周刚马坤陈春林赵南冯娜 . 聚能装药水下爆炸冲击波载荷规律. 高压物理学报, 2017, 31(4): 453-461. doi: 10.11858/gywlxb.2017.04.014
    [18] 张远平池家春龚晏青王广军 . 含铝炸药水下爆炸性能的实验研究. 高压物理学报, 2010, 24(4): 316-320 . doi: 10.11858/gywlxb.2010.04.013
    [19] 梁龙河曹菊珍袁仙春 . 水下爆炸特性的二维数值模拟研究. 高压物理学报, 2004, 18(3): 203-208 . doi: 10.11858/gywlxb.2004.03.003
    [20] 程扬帆马宏昊沈兆武 . 氢化镁储氢型乳化炸药的爆炸特性研究. 高压物理学报, 2013, 27(1): 45-50. doi: 10.11858/gywlxb.2013.01.006
  • 加载中
图(8)表(3)
计量
  • 文章访问数:  154
  • 阅读全文浏览量:  38
  • PDF下载量:  65
出版历程
  • 收稿日期:  2017-07-06
  • 录用日期:  2017-07-18
  • 刊出日期:  2018-04-25

有机玻璃-空气层结构对爆炸水池水下爆炸地基振动的影响

    作者简介:汪泉(1980—), 男, 博士, 副教授, 主要从事爆炸力学研究.E-mail:wqaust@163.com
  • 1. 安徽理工大学化学工程学院, 安徽 淮南 232001
  • 2. 安徽理工大学土木工程博士后流动站, 安徽 淮南 232001
  • 3. 浙江物产光华民爆器材有限公司, 浙江 衢州 324400
基金项目:  安徽省博士后基金项目 2014B035中国博士后基金面上项目 2014M561808国家自然科学基金 11502001

摘要: 为了研究有机玻璃-空气层结构对水下爆炸振动的影响, 采用NUBOX-6016爆破振动测试仪监测小水池(直径5.5 m、高3.62 m)中该结构下水下爆炸引起的地基振动信号, 研究不同空气层厚度对最大振动速度的影响; 基于Matlab软件编写相关程序对测得的振动信号进行Hilbert-Huang变换(HHT), 分析不同空气层厚度对振动信号全局频率的影响。结果表明:对于有机玻璃-空气层结构, 随着空气层厚度的增加, 最大振动速度呈先减小后增大的趋势, 当空气层厚度为120 mm时隔振效果最佳; 通过对振动信号的HHT分析得到全局频率所对应的幅值, 5~15 Hz低频区间段的幅值衰减较明显, 且振动作用时间缩短, 能够有效防止水下爆炸与建/构筑物之间产生共振现象。所得试验结果及分析对水下爆破工程防护及军事舰艇防雷仓结构设计等具有一定参考价值。

English Abstract

  • 随着海洋资源的开发与水下爆破技术的发展, 水下爆破安全防护问题逐渐受到人们的重视。在陆地岩石中爆破, 地震波能量一般不足爆破总能量的10%;而在水下介质中爆破时, 地震波能量可达20%。水下爆破时结构的振动效应较陆地岩石中更复杂, 一般是低频波与高频波共同作用的结果, 其主要特征是振动频带宽、高频丰富、振幅大[1-3]。在浅水域近距离处开展水下钻孔爆破工程时, 通过采用水下预裂爆破、气泡帷幕防护、空气层防护、多段延时起爆等措施削减地震波和水中冲击波[4]。由于空气的波阻抗比水小很多, 当水下冲击波传播到空气与水的交界面时, 水下冲击波将在介质交界面处发生反射, 其透射系数较小, 少部分能量透射到空气介质中, 可有效缓冲水下冲击波和衰减地震能量[5-6]。樊自建等[7]、贾虎等[8-9]、寇晓枫等[10]开展实验研究了空气隔层对水中冲击波的衰减效果, 得出结论:空气隔层能有效衰减冲击波峰值压力、冲击波冲量及总能量, 对保护对象有较好的防护效果。姚熊亮等[11-12]、刘欣等[13]建立了多介质水下爆炸数值模型进行模拟计算, 其研究结果表明, 空气层结构不仅可以防护接触爆炸产生的冲击波, 而且对非接触爆炸也有很好的防护效果。

    本课题组前期针对不同段别雷管的水下爆炸振动信号进行了Hilbert-Huang变换(Hilbert-Huang Transform, HHT)分析[14], 但未进行有机玻璃-空气层结构对水下爆炸振动影响的研究, 且国内外相关文献在此方面报道甚少。基于此考虑, 本工作在小水池中进行有机玻璃-空气层结构约束下的水下爆炸振动测试, 研究空气层厚度对水下爆炸最大振动速度的影响, 通过HHT分析其地基振动信号, 探究空气层厚度对水下爆炸振动全局频率的影响, 为爆炸水池减振、隔振以及减弱爆炸振动对建筑物的破坏作用提供理论支撑。

    • HHT法适用于处理非线性、非平稳信号, 主要由经验模态分解(Empirical Mode Decomposition, EMD)和Hilbert变换两部分组成[15-17]。相对于小波分析, EMD分解克服了小波基选择问题, 避免了由于基函数不同所带来的影响。另外, 原始信号经EMD分解后得到的固有模态函数(Intrinsic Mode Function, IMF)具有不同特征尺度, 该过程是自适应的、高效的。通过EMD分解得到的各IMF分量经Hilbert变换后, 得到各IMF分量的瞬时频谱, 综合所有IMF分量的瞬时频谱得到Hilbert谱。

      爆炸振动原始信号中包含3个方向的信号, 依据《爆破安全规程》(GB 6722-2014)中的13.2.2条规定, 选取振动速度值最大的垂向振动信号(记为X(t))进行分析。基于HHT法对爆炸振动信号进行EMD分解以及Hilbert变换, 过程如下。

      原始信号X(t)经n次EMD分解, 可表示为

      $ X\left( t \right) = \sum\limits_{i = 1}^n {{C_i}\left( t \right) + {r_n}\left( t \right)} $

      式中: Ci(t)为经EMD分解得到的第i阶IMF分量, rn(t)为原始信号减去n个IMF分量之和的残差。

      对得到的IMF分量做Hilbert变换

      $ H[{C_i}\left( t \right)] = \frac{1}{{{\rm{ \pi }}}}{P_{\rm{V}}}\int_{ - \infty }^\infty {\frac{{{C_i}\left( {{t^\prime }} \right)}}{{t - {t^\prime }}}{\rm{d}}{t^\prime }} $

      式中:PV表示柯西主值。

      构造解析信号Z(t)

      $ Z\left( t \right) = {C_i}\left( t \right) + {\rm{j}}H[{C_i}\left( t \right)] = {a_i}\left( t \right){{\rm{e}}^{{\rm{j}}{\varphi _i}(t)}} $

      式中:ai(t)为幅值函数, φi(t)为相位函数。

      $ {a_i}\left( t \right) = \sqrt {C_i^2\left( t \right) + {H^2}[{C_i}\left( t \right)]} $

      $ {\varphi _i}\left( t \right) = {\rm{ta}}{{\rm{n}}^{- 1}}\frac{{H[{C_i}\left( t \right)]}}{{{C_i}\left( t \right)}} $

      原始信号分解后可表示为

      $ X\left( t \right) = {\rm{Re}}\sum\limits_{i = 1}^\mathit{n} {{a_i}} \left( t \right){{\rm{e}}^{{\rm{j}}{\varphi _i}(t)}} = {\rm{Re}}\sum\limits_{i = 1}^\mathit{n} {{a_i}} \left( t \right){{\rm{e}}^{\int {{\omega _i}\left( t \right){\rm{d}}t} }} $

      Hilbert谱可表示为

      $ H\left( {\omega, t} \right) = {\rm{Re}}\sum\limits_{i = 1}^n {{a_i}} \left( t \right){{\rm{e}}^{\int {{\omega _i}\left( t \right){\rm{d}}t} }} $

      式中:ω表示角频率。

      根据以上理论, 采用Matlab编写程序代码, 加载相应模块即可作出相关Hilbert谱。

    • 设计了4种类型的有机玻璃-空气层结构, 空气层厚度(直径)分别为40、80、120和160 mm。中心装药管为壁厚1 mm的有机玻璃管, 外层为壁厚2 mm的有机玻璃壳体, 装药中心与复合结构中心在同一高度, 如图 1所示。

      图  1  有机玻璃-空气层结构

      Figure 1.  Picture of plexiglass-air interlayer structure

      采用NUBOX-6016型爆破振动测试仪记录振动信号, 其传感器使用TP-3V-10144型号, 采用单次采样方式, 采样频率和时间分别为5 kHz、2 s, 延时点数-256, 触发方式为通道出窗触发, 触发条件为0.05 cm/s, 耦合方式为直流耦合。

    • 在直径为5.5 m、高3.62 m的小型爆炸水池中进行水下爆炸试验。入水深度的选取是基于消除爆炸水池边界效应的考虑。一般装药置于水池中心总深度的2/3处时, 来自水面和池底的边界效应可互相抵消[18], 因此装药中心的入水深度选取为2.4 m。选用3台测振仪, 分别布设在距爆炸水池筒体外壁1、2、3 m处(地基振动速度在3 m处已衰减到较小数值, 而1、2、3 m处测点为等间距的典型观测点, 分别标记为1#、2#、3#)。试验系统如图 2所示。

      图  2  振动测试系统(1.爆炸水池; 2.固定架; 3.8号标准雷管; 4.空气隔层; 5.发爆器; 6.1#、2#、3#测振仪)

      Figure 2.  Vibration test system (1.Explosion pool; 2.Fixed mount; 3.Detonator; 4.Air interlayer; 5.Initiator; 6.1#, 2#, 3# vibration measurer)

    • 根据《爆破安全规程》(GB 6722-2014)规定, 选取xyz 3个方向中振动速度最大的z方向(与地面垂直方向)振动信号进行分析。测试得到不同距离、不同厚度空气层条件下的水下爆炸振动参数, 如表 1所示。为了探究有机玻璃壳体对水下爆炸振动速度的影响, 进行填充水和空气层的对比试验。表 2为不同距离、不同厚度水隔层情况下的水下爆炸振动参数。

      Distance/m Direction Main vibration frequency/Hz Maximum vibration velocity/(cm·s-1)
      ∅40 mm ∅80 mm ∅120 mm ∅160 mm ∅40 mm ∅80 mm ∅120 mm ∅160 mm
      1 z 56.763 56.763 56.763 56.763 0.086 0.070 0.054 0.070
      2 z 56.763 56.763 56.763 44.556 0.118 0.097 0.082 0.101
      3 z 56.763 56.763 56.763 56.763 0.080 0.071 0.061 0.086

      表 1  不同距离、不同厚度空气层对水下爆炸振动的影响

      Table 1.  Influence of distances and thickness of air interlayer on underwater explosion vibration

      Distance/m Direction Main vibration frequency/Hz Maximum vibration velocity/(cm·s-1)
      ∅40 mm ∅80 mm ∅120 mm ∅160 mm ∅40 mm ∅80 mm ∅120 mm ∅160 mm
      1 z 62.256 62.256 62.256 56.763 0.086 0.169 0.184 0.185
      2 z 62.256 62.256 62.256 62.256 0.155 0.145 0.160 0.161
      3 z 62.256 62.256 62.256 62.256 0.101 0.097 0.107 0.116

      表 2  不同距离、不同厚度水隔层对水下爆炸振动的影响

      Table 2.  Influence of distances and thickness of water interlayer on underwater explosion vibration

      表 1表 2可看出:相对于水隔层, 不同厚度空气层条件下各测点处主振频率皆有所降低; 部分情况下出现主振频率值不变的现象, 可能由于爆炸当量较小及测振仪灵敏度较小等原因, 因此需要进一步对信号进行频谱分析。图 3图 4分别为不同厚度空气层、水隔层结构对各测点振动速度的影响。

      图  3  不同厚度空气层对各测点振速的影响

      Figure 3.  Influence of different thicknesses of air interlayer on vibration velocity

      图  4  不同厚度水隔层对各测点振速的影响

      Figure 4.  Influence of different thicknesses of water interlayer on vibration velocity

      图 3图 4可看出, 对比相同厚度的空气层和水隔层结构, 空气层结构对水下爆炸振动的衰减更明显。相同厚度水隔层结构条件下:3 m处的振动速度衰减程度最大, 振动速度值最小; 2 m处速度值次之; 1 m处速度值最大。而相同厚度空气层结构条件下:1 m处的振动速度衰减程度最大, 振动速度值最小; 3 m处速度值次之; 2 m处速度值最大。可见空气层结构对近区1 m处的振动速度影响较大。

    • 目前国内使用的振动信号采集仪主要采集最大振幅所对应的频率, 即主振频率, 无法对振动信号整个过程的振动频率进行监测; 但爆破工程中需要保护的对象有其自身的固有频率, 为了避免共振造成的破坏, 需要测试振动信号的全局频率, 以观测危险频段的振幅值是否需要进一步防护。本试验爆炸当量较小, 振动信号相对较弱, 同时可能由于测振仪灵敏度较小, 出现部分情况主振频率值不变的现象。因此, 有必要对振动信号进行Hilbert谱分析。

    • 通过Matlab软件编写相应程序, 将振动测试仪采集到的振动信号读取到矩阵中, 并根据试验设置的采集频率、采集时长等设置运行参数。对事先装载的EMD工具箱, 只需调用命令函数即可使用EMD分解算法。以空气层厚度为40 mm、距离1 m处的垂直方向振动信号为例(见图 5), 利用EMD分解该爆炸振动信号得到各IMF分量, 如图 6所示。

      图  5  原始振动信号

      Figure 5.  Original vibration signal

      图  6  EMD分解后得到各IMF分量

      Figure 6.  IMF components by EMD decomposition

      图 6可看出, 采用EMD分解得到12个IMF分量C1~C12和一个余量r12。其中:C1C2分量频率最高, 所含能量较低, 代表振动测试过程中周围环境的高频噪声; C3分量代表信号的高频成分; C4~C9分量幅值最大, 所含的能量最多, 是信号的优势频率段, 包含信号的最显著特征; C10~C12为信号的低频成分; r12幅值很小, 可能是信号微弱的趋势或仪器的飘零。

      对水下爆炸振动信号经EMD分解后得到的各IMF分量与原始信号进行相关分析, 得到相关分析参数, 如表 3所示。从表 3可看出:各IMF分量的方差值几乎全为零, 且包含信号主要信息的IMF分量段的贡献率达到96.77%。可见, EMD分解过程具有准确性、高效性和自适应性, 保证了信号经分解后仍保留水下爆炸振动信号的非平稳特性, 表明HHT分析方法适用于水下爆炸振动信号处理。

      IMF Variance Proportion/%
      C1 0 1.646 3
      C2 0 0.862 9
      C3 0 0.626 8
      C4 0.000 1 70.307 9
      C5 0 20.200 7
      C6 0 2.208 9
      C7 0 1.254 8
      C8 0 1.081 4
      C9 0 1.719 6
      C10 0 0.015 0
      C11 0 0.060 6
      C12 0 0.015 0

      表 3  信号经EMD分解后相关参数

      Table 3.  Related parameters of the signal by EMD decomposition

    • 对垂向爆炸振动信号经EMD分解得到的IMF分量进行Hilbert变换, 得到频率-时间-振幅三维Hilbert谱。以距离1 m、水隔层厚80 mm的情况为例, 对其振动信号的IMF分量进行Hilbert变换得到Hilbert谱, 如图 7所示。

      图  7  1 m处充80 mm水隔层垂向振动Hilbert谱

      Figure 7.  Vertical vibration Hilbert spectrum of the 80 mm water-filled interlayer at 1 m

      图 7可看出:幅值较大(即颜色较深)的样点主要分布于7 000时间采样点(即1.4 s)之前, 且800时间采样点(即0.16 s)前振动幅值最大, 相对应的频率为60~65 Hz, 与测试仪采集到的主振频率接近; 频率为5~15 Hz处对应的幅值较大, 且作用时间较长, 该频率段与房屋等建筑物的固有频率较为接近, 因此可能对建筑物造成更大的破坏, 在实际工程爆破中需要加以防护。为此, 采用不同厚度的空气层结构进行防护, 并对采集到的振动信号进行Hilbert谱分析, 如图 8所示。

      图  8  不同空气层厚度条件下的垂向振动Hilbert谱

      Figure 8.  Hilbert spectrum of vertical vibration of different thicknesses of air interlayer

      图 8可看出, 在有机玻璃-空气层结构下, 最大振幅所对应的主振频率为45~55 Hz, 与测振仪采集到的主振频率接近。相比于水隔层, 有机玻璃-空气层结构下5~15 Hz区间段的幅值减弱较明显, 且作用时间得到缩短, 但随着空气层厚度的增加, 该频带所对应的幅值有所增加。可见, 针对本试验条件, 为了减小水下爆炸引起的地基振动, 并非空气层越厚越好, 当其厚度为120 mm时防护效果较好。

    • (1) 对于有机玻璃-空气层结构, 随着空气层厚度的增加, 水下爆炸最大振动速度呈先减小后增大趋势, 且当空气层厚度为120 mm时, 振动速度值最小, 对地基振动的衰减效果较好。

      (2) HHT法能有效解决振动测试仪对小药量振动频率监测不敏感等问题, 同时可以得到全局频率所对应的幅值, 直观得出所需要防护的振动频率。

      (3) 通过HHT法分析得出, 有机玻璃-空气层结构作用下, 能有效衰减5~15 Hz低频区间段的振动速度, 且能够缩短作用时间, 有效防止与建/构筑物之间产生共振。

参考文献 (18)

目录

    /

    返回文章
    返回