具有不同界面相厚度的混凝土动态特性

刘海峰 吴萍

刘海峰, 吴萍. 具有不同界面相厚度的混凝土动态特性[J]. 高压物理学报, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006
引用本文: 刘海峰, 吴萍. 具有不同界面相厚度的混凝土动态特性[J]. 高压物理学报, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006
LIU Hai-Feng, WU Ping. Dynamic Mechanical Behavior of Concrete with Different Sizes of Interface Transition Zone[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006
Citation: LIU Hai-Feng, WU Ping. Dynamic Mechanical Behavior of Concrete with Different Sizes of Interface Transition Zone[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 249-260. doi: 10.11858/gywlxb.2017.03.006

具有不同界面相厚度的混凝土动态特性

doi: 10.11858/gywlxb.2017.03.006
基金项目: 

国家自然科学基金 51368048

国家自然科学基金 11162015

教育部“长江学者和创新团队发展计划”创新团队项目 IRT1067

详细信息
    作者简介:

    刘海峰(1975-), 男, 教授, 主要从事材料和结构动态力学性能研究.E-mail:liuhaifeng1557@163.com

  • 中图分类号: O347.3

Dynamic Mechanical Behavior of Concrete with Different Sizes of Interface Transition Zone

  • 摘要: 在细观层次上,可将混凝土看作由水泥砂浆、粗骨料和界面相组成的三相复合材料。为探讨界面相对混凝土动态力学特性的影响,编写了含界面相的圆形骨料随机分布程序,并对具有不同界面相厚度的混凝土动态破坏过程进行模拟,揭示界面相厚度、粗骨料大小、粗骨料体积分数和试件尺寸对混凝土动态特性的影响规律。研究表明:与普通混凝土相同,含界面相的混凝土表现出明显的尺寸效应;随着界面相厚度的增大,混凝土承载能力逐渐减小;保持界面相厚度和粗骨料尺寸不变时,随着粗骨料体积分数的增加,混凝土承载能力呈先增大后减小趋势;保持粗骨料最小粒径和界面相厚度不变时,随着粗骨料最大粒径的增大,混凝土承载能力呈先增大后减小趋势。

     

  • 图  混凝土三相复合材料模型

    Figure  1.  Three-phase composite model of concrete

    图  承载能力的实验与数值模拟结果

    Figure  2.  Experimental and simulated load-carrying capacities

    图  在15 m/s的冲击速度下混凝土破坏模式的数值模拟结果与实验结果

    Figure  3.  Experimental and simulated failure modes of concrete at impact speed of 15 m/s

    图  界面相厚度不同的混凝土冲击破坏过程

    Figure  4.  Impact failure process of concrete with different ITZ sizes

    图  混凝土承载能力与粗骨料最大粒径的关系

    Figure  5.  Load-carrying capacity of concrete vs.maximum particle diameter of coarse aggregate

    图  混凝土承载能力与粗骨料体积分数的关系

    Figure  6.  Load-carrying capacity of concrete vs.volume fraction of coarse aggregate

    图  混凝土承载能力与界面相厚度的关系

    Figure  7.  Load-carrying capacity of concrete vs.thickness of ITZ

    图  混凝土承载能力与试件尺寸的关系

    Figure  8.  Load-carrying capacity of concrete vs.specimen size

    表  1  模型参数

    Table  1.   Model parameters

    Material ρ0/(g/cm3) G/(GPa) fc/(MPa) A B C N Smax p1/(MPa) pc/(MPa) K1/(MPa) K2/(MPa) K3/(MPa) D1 D2 εf,min μ1 μc T/(MPa) fs
    Cement mortar 2.10 10.66 32 0.79 1.80 0.007 0.61 7 700 10.67 85 -171 208 0.04 1.0 0.01 0.10 0.0007 2.656 0.002
    Interface phase 2.40 7.25 19 0.79 1.80 0.007 0.61 7 1000 6.33 85 -171 208 0.04 1.0 0.01 0.01 0.0008 1.577 0.002
    Aggregate 2.60 23.00 70 0.79 1.80 0.007 0.61 7 1000 23.33 85 -171 208 0.04 1.0 0.01 0.01 0.0008 5.810 0.002
    下载: 导出CSV

    表  2  粗骨料最大粒径不同的混凝土的承载能力

    Table  2.   Load-carrying capacity of concrete with different maximum sizes of coarse aggregate

    Specimen h/(mm) D0/(mm) φk/(%) {[pl-c-pl-c(Dmax=10 mm)]/pl-c(Dmax=10 mm)}/(%)
    Dmax=10 mm Dmax=20 mm Dmax=30 mm Dmax=40 mm
    Cylinder
    (Ø74 mm×70 mm)
    0.03 5 35
    40
    45
    55
    0
    0
    0
    0
    6.33
    11.40
    2.45
    10.30
    4.07
    3.37
    0.59
    8.64
    3.37
    2.97
    -0.30
    8.35
    0.06 5 35
    40
    45
    55
    0
    0
    0
    0
    7.77
    10.80
    4.81
    3.01
    2.87
    6.07
    3.67
    1.70
    0.45
    2.85
    3.12
    -0.10
    0.20 5 35
    40
    45
    55
    0
    0
    0
    0
    1.16
    2.22
    3.91
    2.06
    -6.60
    -4.30
    -1.60
    -0.05
    -7.20
    -8.20
    -5.30
    -7.30
    Cube
    (100 mm)
    0.03 5 35
    40
    45
    55
    0
    0
    0
    0
    3.55
    4.50
    12.50
    8.93
    -0.20
    2.88
    9.13
    3.17
    -4.40
    2.50
    8.72
    1.46
    0.06 5 35
    40
    45
    55
    0
    0
    0
    0
    4.65
    5.81
    9.00
    0.32
    3.30
    4.22
    -0.10
    -1.30
    2.85
    3.69
    -1.80
    -4.60
    0.20 5 35
    40
    45
    55
    0
    0
    0
    0
    3.66
    3.85
    6.00
    2.38
    -4.50
    -4.60
    -7.60
    -5.60
    -17.40
    -13.20
    -13.10
    -12.20
    Cube
    (150 mm)
    0.03 5 35
    40
    45
    55
    0
    0
    0
    0
    7.90
    4.76
    7.13
    3.19
    6.41
    4.12
    5.62
    -0.10
    6.21
    3.84
    5.17
    -2.20
    0.06 5 35
    40
    45
    55
    0
    0
    0
    0
    1.08
    3.11
    0.34
    3.58
    -0.90
    -1.70
    -4.80
    -6.50
    -1.60
    -3.90
    -5.20
    -11.00
    0.20 5 35
    40
    45
    55
    0
    0
    0
    0
    1.15
    2.76
    0.15
    2.47
    -0.20
    -2.20
    -10.00
    -9.70
    -7.24
    -6.67
    -12.40
    -14.00
    下载: 导出CSV

    表  3  粗骨料体积分数不同时混凝土的承载能力

    Table  3.   Load-carrying capacity of concrete with various volume fractions of coarse aggregate

    Specimen h/(mm) D/(mm) {[pl-c-pl-c(φk=35%)]/pl-c(φk=35%)}/(%)
    φk=35% φk=40% φk=45% φk=55%
    Cylinder
    (Ø74 mm×70 mm)
    0.03 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    1.03
    5.87
    0.36
    0.64
    -4.97
    -8.43
    -8.14
    -8.32
    -15.43
    -12.27
    -11.72
    -11.37
    0.06 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    0.28
    3.15
    3.40
    2.68
    -5.09
    -7.70
    -4.35
    -2.57
    -13.26
    -17.09
    -14.24
    -13.76
    0.20 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    2.07
    3.14
    4.59
    0.92
    -8.01
    -5.51
    -3.06
    -6.16
    -12.84
    -12.07
    -6.73
    -12.99
    Cube
    (100 mm)
    0.03 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    0.22
    1.15
    3.29
    7.50
    -12.11
    -4.51
    -3.92
    -0.01
    -18.85
    -14.64
    -16.14
    -13.85
    0.06 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    4.29
    5.44
    5.22
    5.14
    -3.31
    0.71
    -6.51
    -7.67
    -12.78
    -16.39
    -16.69
    -19.06
    0.20 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    1.31
    1.50
    1.15
    6.49
    -5.09
    -2.95
    -8.23
    -0.13
    -12.72
    -13.80
    -13.77
    -7.29
    Cube
    (150 mm)
    0.03 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    3.59
    0.56
    1.36
    1.28
    -1.00
    -1.70
    -1.73
    -1.97
    -5.19
    -9.33
    -11.00
    -12.67
    0.06 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    2.92
    4.98
    2.14
    0.51
    -2.07
    -2.79
    -5.90
    -5.66
    -7.96
    -5.69
    -13.13
    -17.17
    0.20 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    3.77
    5.42
    1.73
    4.41
    -1.13
    -2.11
    -10.97
    -6.60
    -6.06
    -4.83
    -14.93
    -12.91
    下载: 导出CSV

    表  4  界面相厚度不同的混凝土的承载能力

    Table  4.   Load-carrying capacity of concrete with different sizes of ITZ

    Specimen φk/(%) D/(mm) {[pl-c-pl-c(h=0.03 mm)]/pl-c(h=0.03 mm)}/(%)
    h=0.03 mm h=0.06 mm h=0.20 mm
    Cylinder
    (Ø74 mm×70 mm)
    35 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -6.67
    -5.41
    -7.75
    -9.31
    -8.95
    -13.38
    -18.28
    -18.23
    40 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -7.37
    -7.84
    -4.95
    -7.48
    -8.02
    -15.61
    -14.84
    -18.00
    45 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -6.79
    -4.65
    -3.94
    -3.62
    -11.87
    -10.61
    -13.76
    -16.30
    55 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -4.27
    -10.60
    -10.39
    -11.76
    -6.16
    -13.18
    -13.66
    -19.73
    Cube
    (100 mm)
    35 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -9.23
    -8.27
    -6.08
    -9.31
    -12.37
    -12.28
    -16.14
    -18.23
    40 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -5.55
    -4.37
    -4.32
    -7.48
    -11.43
    -11.98
    -17.87
    -18.00
    45 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -0.15
    -3.26
    -8.61
    -3.62
    -5.37
    -10.85
    -19.89
    -16.30
    55 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -2.44
    -10.15
    -6.70
    -11.76
    -5.76
    -11.42
    -13.77
    -19.73
    Cube
    (150 mm)
    35 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -6.41
    -12.32
    -12.85
    -13.30
    -7.86
    -13.63
    -13.61
    -19.52
    40 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -7.01
    -8.48
    -12.19
    -13.96
    -7.69
    -9.45
    -13.30
    -17.03
    45 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -7.42
    -13.29
    -16.55
    -16.56
    -7.98
    -13.98
    -21.74
    -23.33
    55 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -9.14
    -8.80
    -14.93
    -17.77
    -8.70
    -9.34
    -17.42
    -19.75
    下载: 导出CSV

    表  5  具有不同试件尺寸的混凝土的承载能力

    Table  5.   Load-carrying capacity of concrete with different specimen sizes

    h/(mm) D/(mm) [(pl-c-pl-c, cylinder)/pl-c, cylinder]/(%)
    Cylinder (Ø74 mm×70 mm) Cube (100 mm) Cube (150 mm)
    0.03 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -7.99
    -12.17
    -9.59
    -7.23
    -20.77
    -26.31
    -26.55
    -25.99
    0.06 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -7.99
    -12.17
    -9.59
    -7.23
    -20.77
    -26.31
    -26.55
    -25.99
    0.20 5-10
    5-20
    5-30
    5-40
    0
    0
    0
    0
    -13.10
    -11.71
    -13.39
    -17.78
    -20.79
    -20.38
    -19.07
    -19.47
    下载: 导出CSV
  • [1] 王政, 倪玉山, 曹菊珍, 等.冲击载荷下混凝土动态力学性能研究进展[J].爆炸与冲击, 2005, 25(6):519-527. doi: 10.3321/j.issn:1001-1455.2005.06.007

    WANG Z, NI Y S, CAO J Z, et al.Recent advances of dynamic mechanical behavior of concrete under impact loading[J].Explosion and Shock Waves, 2005, 25(6):519-527. doi: 10.3321/j.issn:1001-1455.2005.06.007
    [2] ABRAMS D A.Effect of rate of application of load on the compressive strength of concerete[J].Int J ASTM, 1917, 17:364-377.
    [3] 胡时胜, 王道荣, 刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学, 2001, 18(5):115-118. doi: 10.3969/j.issn.1000-4750.2001.05.015

    HU S S, WANG D R, LIU J F.Experimental study of dynamic mechanical behavior of concrete[J].Engineering Mechanics, 2001, 18(5):115-118. doi: 10.3969/j.issn.1000-4750.2001.05.015
    [4] 杜修力, 田瑞俊, 彭一江, 等.冲击荷载作用下混凝土抗压强度的细观力学数值模拟[J].北京工业大学学报, 2009, 35(2):213-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900160387

    DU X L, TIAN R J, PENG Y J, et al.Numerical simulation of concrete dynamic compressive strength under impact loading based on mesomechanics[J].Journal of Beijing University of Technology, 2009, 35(2):213-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900160387
    [5] 刘传雄, 李玉龙, 吴子燕, 等.混凝土材料的动态压缩破坏机理及本构关系[J].振动与冲击, 2011, 30(5):1-5. doi: 10.3969/j.issn.1000-3835.2011.05.001

    LIU C X, LI Y L, WU Z Y, et al.Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J].Journal of Vibration and Shock, 2011, 30(5):1-5. doi: 10.3969/j.issn.1000-3835.2011.05.001
    [6] 刘海峰, 韩莉.冲击荷载作用下混凝土动态力学性能数值模拟研究[J].固体力学学报, 2015, 36(2):145-153. http://d.old.wanfangdata.com.cn/Conference/9123914

    LIU H F, HAN L.Numerical simulation research on dynamic mechanical behaviors of concrete subjected to impact loading[J].Chinese Journal of Solid Mechanics, 2015, 36(2):145-153. http://d.old.wanfangdata.com.cn/Conference/9123914
    [7] 刘海峰, 王亿颖, 宋建夏.沙漠砂混凝土动态力学性能数值模拟[J].水利学报, 2016, 47(4):493-500. http://d.old.wanfangdata.com.cn/Periodical/slxb201604004

    LIU H F, WANG Y Y, SONG J X.Numerical simulation of dynamic mechanical behaviors of desert sand concrete[J].Journal of Hydraulic Engineering, 2016, 47(4):493-500. http://d.old.wanfangdata.com.cn/Periodical/slxb201604004
    [8] 刘海峰, 韩莉.二维骨料随机分布混凝土的动态力学性能数值模拟[J].高压物理学报, 2016, 30(3):191-199. http://www.gywlxb.cn/CN/abstract/abstract1870.shtml

    LIU H F, HAN L.Numerical simulation of dynamic mechanical behavior of concrete with two-dimensional random distribution of coarse aggregate[J].Chinese Journal of High Pressure Physics, 2016, 30(3):191-199. http://www.gywlxb.cn/CN/abstract/abstract1870.shtml
    [9] 韩宇栋, 张君, 高原.粗骨料体积含量对混凝土断裂参数的影响[J].工程力学, 2013, 30(3):191-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013051500037475

    HAN Y D, ZHANG J, GAO Y.Effect of coarse aggregate content on fracture parameters of concrete[J].Engineering Mechanics, 2013, 30(3):191-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013051500037475
    [10] 姜璐.界面结构特性及混凝土弹性模量预测[D].杭州: 浙江工业大学, 2005. http://cdmd.cnki.com.cn/article/cdmd-10337-2005103151.htm

    JIANG L.Structural characteristics of ITZ and prediction of elastic modulus of concrete[D].Hangzhou: Zhejiang University of Technology, 2005. http://cdmd.cnki.com.cn/article/cdmd-10337-2005103151.htm
    [11] 何锐, 嵇绍华, 黄平明, 等.粗骨料/浆体界面性能对混凝土力学性能影响的数值模拟[J].长安大学学报(自然科学版), 2015, 35(2):31-37. doi: 10.3969/j.issn.1671-8879.2015.02.006

    HE R, JI S H, HUANG P M, et al.Numerical simulation of the effect of interface transition zone between mortar and aggregates on the mechanics properties of concrete[J].Journal of Chang'an University (Natural Science Edition), 2015, 35(2):31-37. doi: 10.3969/j.issn.1671-8879.2015.02.006
    [12] LEE K M, PARK J H.A numerical model for elastic modulus of concrete considering interfacial transition zone[J].Cem Concr Res, 2008, 38(3):396-402. doi: 10.1016/j.cemconres.2007.09.019
    [13] DIAMOND S, HUANG J.The ITZ in concrete:a different view based on image analysis and SEM observations[J].Cem Concr Compos, 2001, 23(2):179-188. http://www.sciencedirect.com/science/article/pii/S0958946500000652
    [14] GUINEA G V, EL-SAYED K, ROCCO C G, et al.The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete[J].Cem Concr Res, 2002, 32(12):1961-1970. doi: 10.1016/S0008-8846(02)00902-X
    [15] 杜修力, 金浏.界面过渡区对混凝土动态力学行为影响分析[J].地震工程与工程振动, 2015, 35(1):11-19. http://www.cnki.com.cn/Article/CJFDTotal-DGGC201501002.htm

    DU X L, JIN L.Effect of the interfacial transition zone on the dynamic macroscopic mechanical behavior of concrete[J].Earthquake Engineering and Engineering Dynamics, 2015, 35(1):11-19. http://www.cnki.com.cn/Article/CJFDTotal-DGGC201501002.htm
    [16] 吕燕红.混凝土开裂在细观层次上的数值模拟研究[D].昆明: 昆明理工大学, 2013.

    LV Y H.Numerical simulation of concrete cracking from the micro-mechanical viewpoint[D].Kunming: Kunming University of Science and Technology, 2013.
    [17] FULLER W B, THOMPSON S E.The laws of proportioning concrete[J].Asian J Civil Eng Transp, 1907, 59(1):67-143. doi: 10.1002-jctb.5000531605/
    [18] WALRAVEN J C, REINHARDT H W.Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading[J].HERON, 1981, 26(1A):26-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071206690785
    [19] HOLMQUIST T J, JOHNSON G R, COOK W H.A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures[C]//JACKSON N, DICKERS S.Proceedings of the 14th International Symposium on Ballistics.Quebec, Canada, 1993.
    [20] 曹吉星, 陈虬, 张吉萍.混凝土SHPB试验的数值模拟及应力均匀性[J].西南交通大学学报, 2008, 43(1):67-70. doi: 10.3969/j.issn.0258-2724.2008.01.013

    CAO J X, CHEN Q, ZHANG J P.Simulation of shpb test on concrete and uniformity of stresses[J].Journal of Southwest Jiaotong University, 2008, 43(1):67-70. doi: 10.3969/j.issn.0258-2724.2008.01.013
    [21] LIU H F, NING J G.Constitutive model for concrete subjected to impact loading[J].Journal of Southeast University (English Edition), 2012, 25(12):135-140. http://en.cnki.com.cn/Article_en/CJFDTotal-DNDY201201017.htm
    [22] 陈志源, 李启令.土木工程材料[M].第2版.武汉:武汉理工大学出版社, 2009.

    CHEN Z Y, LI Q L.Civil engineering materials[M].2nd ed.Wuhan:Wuhan University of Technology Press, 2009.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  5444
  • HTML全文浏览量:  2413
  • PDF下载量:  43
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-09-19

目录

    /

    返回文章
    返回