金和铂的室温等温物态方程及其压标的意义

金柯 吴强 李欣竹 蔡灵仓 经福谦

引用本文:
Citation:

金和铂的室温等温物态方程及其压标的意义

    通讯作者: 金柯; 

Isothermal Equations of State of Au and Pt at Room Temperature: Implication for Pressure Scales

    Corresponding author: JIN Ke
  • 摘要: 在对Grneisen系数高温高压特性不作任何假设的前提下,由冲击雨贡纽数据直接确定了材料零温零压体积、等温体模量及其对压力的一阶偏导。基于上述参数,计算了两种常用压标材料金和铂压缩比至0.5~0.6的0 K物态方程,并通过相应的热压修正得到了金和铂的室温等温物态方程。计算结果与准静水压条件下静高压实验结果具有非常好的吻合性,缩小了早期不同金和铂压标之间的差异。独立来源实验数据和理论计算结果的交叉检验表明,金和铂的室温等温物态方程计算结果可以用于今后静高压实验的压标。
  • [1] Jing F Q. Introduction to Experimental Equation of State [M]. Beijing: Science Press, 1986. (in Chinese)
    [2] 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1986.
    [3] Xu X S, Zhang W X. Introduction to Theoretical Equation of State [M]. Beijing: Science Press, 1986. (in Chinese)
    [4] 徐锡申, 张万箱. 实用物态方程导引 [M]. 北京: 科学出版社, 1986.
    [5] Mao H K, Wu Y, Hemley R J, et al. X-Ray Diffraction to 302 Gigapascals: High Pressure Crystal Structure of Cesium Iodide [J]. Science, 1989, 246: 649-651.
    [6] Ruoff A L, Xia H, Xia Q. The Effect of a Tapered Aperture on X-Ray Diffraction from a Sample with a Pressure Gradient: Studies on Three Samples with a Maximum Pressure of 560 GPa [J]. Rev Sci Instrum, 1992, 63: 4342-4348.
    [7] Cynn H, Yoo C S. Equation of State of Tantalum to 174 GPa [J]. Phys Rev B, 1999, 59: 8526-8529.
    [8] Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1980, 52: 3363-3374.
    [9] Holmes N C, Moriarty J A, Gathers G R, et al. The Equation of State of Platinum to 660 GPa(6. 6Mbar) [J]. J Appl Phys, 1989, 66: 2962-2967.
    [10] Hixson R S, Fritz J N. Shock Compression of Tungsten and Molybdenum [J]. J Appl Phys, 1992, 71: 1721-1728.
    [11] Jamieson J C, Fritz J N, Manghnani M H. Pressure Measurement at High Temperature in X-Ray Diffraction Studies: Gold as a Primary Standard [A]//Akimoto S, Manghnani M H. High-Pressure Research in Geophysics [C]. Tokyo: Center for Academic Publishing, 1982: 27-48.
    [12] Anderson O L, Isaak D G, Yamamoto S. Anharmonicity and the Equation of State for Gold [J]. J Appl Phys, 1989, 65: 1534-1543.
    [13] Decker D L. High Pressure Equation of State for NaCl, KCl and CsCl [J]. J Appl Phys, 1971, 42: 3239-3244.
    [14] Brown J M. The NaCl Pressure Standard [J]. J Appl Phys, 1999, 86: 5801-5808.
    [15] Speziale S, Zha C S, Duffy T S. Quasi-Hydrostatic Compression of Magnesium Oxide to 52 GPa: Implications for the Pressure-Volume-Temperature Equation of State [J]. J Geophys Res, 2001, 106: 515-528.
    [16] Shigeaki Ono, Takumi Kikegawa, Yasuo Ohishi. Structural Property of CsCl-Type Sodium Chloride under Pressure [J]. Solid State Commun, 2006, 137: 517-521.
    [17] Yuichi Akahama, Haruki Kawamura, Singh A K. Equation of State of Bismuth to 222 GPa and Comparison of Gold and Platinum Pressure Scales to 145 GPa [J]. J Appl Phys, 2002, 92: 5892-5897.
    [18] Fei Y, Li J, Hirose K. A Critical Evaluation of Pressure Scales at High Temperatures by in situ X-Ray Diffraction Measurements [J]. Phys Earth Planet Inter, 2004, 143/144: 515-526.
    [19] Shim S, Duffy T S, Takemura K. Equation of State of Gold and Its Appllication to the Phase Boundaries Near 660 km Depth in Earth's Mantle [J]. Earth Planet Sci Lett, 2002, 203: 729-739.
    [20] Akahama Y, Kawamura H, Singh A K. A Comparison of Volume Compressions of Silver and Gold up to 150 GPa [J]. J Appl Phys, 2004, 95: 4767-4771.
    [21] Wu Q, Jing F Q, Li X Z. Determination of the Input ParametersB0K, B0Kand 0K for 0 K Universal Isothermal Equation of State [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 97-104. (in Chinese)
    [22] 吴强, 经福谦, 李欣竹. 零温物态方程输入参数B0K, B0K和0K的确定 [J]. 高压物理学报, 2005, 19(2): 97-104.
    [23] Marsh S P. Los Alamos Shock Hugoniot Data [Z]. Berkeley: University of California Press, 1980.
    [24] Jones A H, Isbell W M, Maiden C L. Measurement of the Very High Pressure Properties of Materials Using Light Gas Gun [J]. J Appl Phys, 1966, 37: 3493-3499.
    [25] Holzapfel W B, Hartwig M, Sievers W. Equations of State for Cu, Ag, and Au for Wide Ranges in Temperature and Pressure up to 500 GPa and Above [J]. J Phys Chem Ref Data, 2001, 30: 515-529.
    [26] Heinz D L, Jeanloz R. The Equation of State of the Gold Calibration Standard [J]. J Appl Phys, 1984, 55: 885-893.
    [27] Bell P M, Xu J, Mao H K. Static Compression of Gold and Copper and Calibration of the Ruby Pressure Scale to Pressure to 1. 8 Mbar [A]//Gupta Y M. Shock Waves in Condensed Matter-1985 [C]. Nork York: Plenum, 1986: 125-130.
    [28] Dewaele A, Loubeyre P, Mezouar M. Equation of State of Six Metals above 94 GPa [J]. Phys Rev B, 2004, 70: 094112.
    [29] Boettger J C. Theoretical Extension of the Gold Pressure Calibration Standard beyond 3 Mbar [J]. Phys Rev B, 2003, 67: 174107.
    [30] Souvatzis P, Delin A, Eriksson O. Calculation of the Equation of State of fcc Au from First Principles [J]. Phys Rev B, 2006, 73: 054110.
    [31] Tsuchiya T. First Principles Prediction of the p-V-T Equation of State Gold and The 660 km Discontinuity in Earth's Mantle [J]. J Geophys Res, 2003, 108: 2462.
    [32] Dorogokupets P I, Oganov A R. Ruby, Metals, and MgO as Alternative Pressure Scales: A Semiempirical Description of Shock-Wave, Ultrasonic, X-Ray, and Thermochemical Data at High Temperatures and Pressures [J]. Phys Rev B, 2007, 75: 024115.
    [33] Greeff C W, Graf M J. Lattice Dynamic and the High Pressure Equation of State of Au [J]. Phys Rev B, 2004, 69: 054107.
    [34] Wang Y, Rajeev Ahuja, Borje Johansson. Reduction of Shock Wave Data with Mean Field Potential Approach [J]. J Appl Phys, 2002, 92: 6616-6620.
    [35] Kei Hirose, Nagayoshi Sata, Tetsuya Komabayashi, et al. Simultaneous Volume Measurements of Au and MgO to 140 GPa and Thermal Equation of State of Au on the MgO Pressure Scale [J]. Phys Earth Planet Inter, 2008, 167: 149-154.
    [36] McQueen R G, Marsh S P, Taylor J W, et al. High Velocity Impact Phenomena [M]. New York: Academic, 1970.
    [37] Xiang S K, Cai L C, Bi Y, et al. Thermal Equation of State for Pt [J]. Phys Rev B, 2005, 72: 184102.
    [38] Bercegeay C, Bernard S. First Principles Equation of State and Elastic Properties of Seven Metals [J]. Phys Rev B, 2005, 72: 214101.
    [39] Singh A K. Pressure-Volume Data for Epsilon Iron and Platinum to Earth-Core Pressures and above from One-Parameter Equation of State Implication on Platinum Pressure Scale [J]. Phys Earth Planet Inter, 2007, 164: 75-82.
    [40] Menendez-Proupin E, Singh A K. Ab Initio Calculations of Elastic Properties of Compressed Pt [J]. Phys Rev B, 2007, 76: 054117.
    [41] Zha C S, Mibe K, Bassett W A, et al. p-V-T Equation of State of Platinum to 80 GPa and 1900 K from Internal Resistive Heating/X-Ray Diffraction Measurements [J]. J Appl Phys, 2008, 103: 054908.
  • [1] 邹勇陈立溁 . 贵金属金的状态方程. 高压物理学报, 2006, 20(3): 308-312 . doi: 10.11858/gywlxb.2006.03.015
    [2] 金柯吴强耿华运蔡灵仓经褔谦 . 160 GPa压力范围内重新标定的红宝石压标. 高压物理学报, 2012, 26(6): 608-616. doi: 10.11858/gywlxb.2012.06.002
    [3] 吴强经福谦李欣竹 . 零温物态方程输入参数B0K、B0K和0K的确定. 高压物理学报, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001
    [4] 乔二伟郑海飞孙樯 . 甲醇作为压标的拉曼研究. 高压物理学报, 2004, 18(4): 368-373 . doi: 10.11858/gywlxb.2004.04.014
    [5] 张强彭放刘冬琼樊聪梁浩管诗雪谭立洁 . 非静水压下材料强度对压力标定的影响. 高压物理学报, 2017, 31(4): 353-357. doi: 10.11858/gywlxb.2017.04.001
    [6] 李敏郑海飞 . 常温高压下水的拉曼谱峰标定压力的研究. 高压物理学报, 2004, 18(4): 374-378 . doi: 10.11858/gywlxb.2004.04.015
    [7] 赵金郑海飞 . 0.1~800 MPa压力下方解石拉曼光谱的实验研究. 高压物理学报, 2003, 17(3): 226-229 . doi: 10.11858/gywlxb.2003.03.012
    [8] 张其黎赵艳红马桂存 . 金高压物态方程的第一原理研究. 高压物理学报, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003
    [9] 林玉亮卢芳云卢力 . 石英压电晶体在霍普金森压杆实验中的应用. 高压物理学报, 2005, 19(4): 299-304 . doi: 10.11858/gywlxb.2005.04.003
    [10] 尚兵王彤彤 . 一种立式分离式霍普金森压杆实验装置研制. 高压物理学报, 2018, 32(4): 043201-1-043201-5. doi: 10.11858/gywlxb.20170658
    [11] 胡静孙久勋蔡灵仓 . 4种等温物态方程适用性的比较研究. 高压物理学报, 2006, 20(3): 313-321 . doi: 10.11858/gywlxb.2006.03.016
    [12] 李大红王悟 . 陶瓷物态方程实验研究. 高压物理学报, 1993, 7(3): 226-231 . doi: 10.11858/gywlxb.1993.03.010
    [13] 陈俊祥金柯吴强 . 四参数普适物态方程. 高压物理学报, 2014, 28(3): 293-299. doi: 10.11858/gywlxb.2014.03.005
    [14] 吴雄 . 新型爆轰产物物态方程. 高压物理学报, 1991, 5(2): 98-103 . doi: 10.11858/gywlxb.1991.02.003
    [15] 陈其峰蔡灵仓王为傅秋卫陈栋泉经福谦 . 稠密氘气物态方程研究. 高压物理学报, 2000, 14(3): 176-181 . doi: 10.11858/gywlxb.2000.03.004
    [16] 李银成 . 爆轰产物物态方程(Ⅰ)爆热、爆轰产物的等熵方程和物态方程. 高压物理学报, 1998, 12(4): 271-281 . doi: 10.11858/gywlxb.1998.04.006
    [17] 张春斌李茂生张世泽 . 2024Al的三相物态方程. 高压物理学报, 1989, 3(4): 279-283 . doi: 10.11858/gywlxb.1989.04.003
    [18] 李茂生张春斌 . 关于材料稀疏区的零温物态方程. 高压物理学报, 1990, 4(1): 24-28 . doi: 10.11858/gywlxb.1990.01.004
    [19] 张春斌 . 物态方程的分子动力学研究. 高压物理学报, 1989, 3(1): 51-57 . doi: 10.11858/gywlxb.1989.01.007
    [20] 武娜田春玲刘福生匡安农袁宏宽郑兴荣 . 固氖高压物态方程的量子理论计算. 高压物理学报, 2012, 26(1): 41-47. doi: 10.11858/gywlxb.2012.01.006
  • 加载中
计量
  • 文章访问数:  1938
  • 阅读全文浏览量:  5
  • PDF下载量:  940
出版历程
  • 收稿日期:  2008-07-02
  • 录用日期:  2008-10-21
  • 刊出日期:  2009-06-15

金和铂的室温等温物态方程及其压标的意义

    通讯作者: 金柯; 
  • 1. 中国工程物理研究院流体物理研究所,冲击波物理与爆轰物理国防科技重点实验室,四川绵阳 621900

摘要: 在对Grneisen系数高温高压特性不作任何假设的前提下,由冲击雨贡纽数据直接确定了材料零温零压体积、等温体模量及其对压力的一阶偏导。基于上述参数,计算了两种常用压标材料金和铂压缩比至0.5~0.6的0 K物态方程,并通过相应的热压修正得到了金和铂的室温等温物态方程。计算结果与准静水压条件下静高压实验结果具有非常好的吻合性,缩小了早期不同金和铂压标之间的差异。独立来源实验数据和理论计算结果的交叉检验表明,金和铂的室温等温物态方程计算结果可以用于今后静高压实验的压标。

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回