高压处理后水稻抗氧化酶活性及对逆境胁迫的响应

白成科 李桂双 段俊 彭长连 翁克难 徐世平

引用本文:
Citation:

高压处理后水稻抗氧化酶活性及对逆境胁迫的响应

    通讯作者: 段俊; 

Activities of Antioxidative Enzymes and the Responds to Cold Stress of Rice Treated by High Hydrostatic Pressure

    Corresponding author: DUAN Jun
  • 摘要: 对经高静水压处理的水稻粤香占(Oryza sativa L. cv. Yuexiangzhan)种子播种后的植株进行了抗氧化酶活性的测定和对逆境胁迫响应的研究。结果表明,高压处理抑制了水稻生长早期(12 d)色素和蛋白质含量的增加,并使早期抗氧化酶活性表现较对照低。随着播种天数增加,经高压处理的材料中的色素、蛋白质含量不同程度地增加,抗氧化酶活性发生改变,至播种后32 d时,高压处理的叶绿素含量和可溶性蛋白含量都高于对照粤香占。在自然低温条件下,经高压(干压、湿压)处理的植株其Rubisco大、小亚基含量和光合色素含量较高,抗光抑制能力增强,具一定的耐低温性。
  • [1] Mozhaev V V, Heremans K, Frank J, et al. High Pressure Effects on Protein Structure and Function [J]. Proteins-Structure Function Genetics, 1996, 24: 81-91.
    [2] Asaka M, Hayashi R. Activation of Polyphenol Oxidase in Pear Fruits by High Pressure Treatment [J]. Agric Biol Chem, 1991, 55(9): 2439-2440.
    [3] Morishima I. Current Perspectives in High Pressure Biology [M]. London: Academic Press, 1987. 17-272.
    [4] Shantha D S, Doulas M C, Ana J, et al. High Resolution NMR Study of the Pressure-Induced Unfolding of Lysozyme [J]. Biochemistry, 1992, 3: 7773-7778.
    [5] Lellis F B, David L W. Strutural Change in Lipid Bilayers and Biological Membrane Caused by Hydrostatic Pressure [J]. Biochemistry, 1986, 25: 7484-7488.
    [6] Li G S, Bai C K, Duan J, et al. Effect of High Hydrostatic Pressure Treatment on Physiological Characteristics of Rice Plants (Oryza sativa L. ) [J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 122-128. (in Chinese)
    [7] 李桂双, 白成科, 段俊, 等. 静水高压处理对水稻植株生理特性的影响 [J]. 高压物理学报, 2003, 17(2): 122-128.
    [8] Xu S P, Liao Y P, Weng K N, et al. Pressure Induced Rice Mutation and Effects of High Hydrostatic Pressure on the Growth and Development of Rice [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 241-248. (in Chinese)
    [9] 徐世平, 廖耀平, 翁克难, 等. 水稻压致变异和高压对水稻生长发育的影响 [J]. 高压物理学报, 2001, 15(4): 241-248.
    [10] Bai C K, Li G S, Peng C L, et al. Preliminary Study of Rice Mutants Induced by High Hydrostatic Pressure [J]. Journal of Tropical and Subtropical Botany, 2003, 11(2): 132-136. (in Chinese)
    [11] 白成科, 李桂双, 彭长连, 等. 高静水压诱导水稻变异的初步研究 [J]. 热带亚热带植物学报, 2003, 11(2): 132-136.
    [12] Lin Z F, Li S S, Lin G Z, et al. Superoxide Dismutase Activity and Lipid Peroxidation in Relation to Senescence of Rice Leaves [J]. Acta Botanica Sinica, 1984, 26: 605-615. (in Chinese)
    [13] 林植芳, 李双顺, 林桂珠, 等. 超氧化物歧化酶和脂质过氧化与水稻叶片衰老的关系 [J]. 植物学报, 1984, 26: 605-615.
    [14] Bradford M M. A Rapid and Sentive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Protein-Dye Binding [J]. Anal Biochem, 1976, 72: 248-254.
    [15] Liu Y H, Peng X X, Li M Q. Degradation of Rubulose-1, 5-Bisphosphate Carboxylase/Oxygenase in Rice Leaves under Oxidative Stress Induced by Methyl Viologen [J]. Acta Phytophysiologica Sinica, 2000, 26(6): 481-486. (in Chinese)
    [16] 刘拥海, 彭新湘, 李明启. 水稻叶片中过氧化氢与核酮糖-1, 5-二磷酸羧化酶/加氧酶降解的关系 [J]. 植物生理学报, 2000, 26(6): 481-486.
    [17] Giannopolities C N, Ries S K. Superoxide Dismutase Ⅱ. Purfication and Quantitative Relationship with Water-Soluble Protein in Seedings [J]. Plant Physiology, 1977, 59: 315-318.
    [18] Nakano Y, Asada K. Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxide in Spinach Chloroplasts [J]. Plant Cell Physiology, 1981, 22: 867-880.
    [19] Schreiber U, Schliwa U, Rilger W. Continues Recording of Photochemical and Nonphotochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluorometer [J]. Photosynth Res, 1986, 10: 51-62.
    [20] Foyes C H, Furbank R, Harbinson J. The Mechanisms Contributing to Photosynthetic Control of Electron Transport by Carbon Assimilation in Leaves [J]. Photosynth Res, 1990, 25: 83-100.
    [21] Wang B S. Free Radical and Harm of Plant's Membrane [J]. Plant Physiology Communications, 1988, (2): 12-16. (in Chinese)
    [22] 王宝山. 植物自由基与植物膜伤害 [J]. 植物生理学通讯, 1988, (2): 12-16.
    [23] Yu S W, Tang Z C. Plant Physiology and Molecular Biology [M]. Beijing: Science Press, 1999. 224. (in Chinese)
    [24] 余叔文, 汤章城. 植物生理与分子生物学 [M]. 北京: 科学出版社, 1999. 224.
    [25] Oquist G. Stress and Adaptation in Photosynthesis [A]. Doulas R H, Moan J, Dall Acqua. Light in Biology and Medicine [C]. New York; London: Planum Press, 1988. 433.
    [26] Amparo B, Georgia V, Maria C, et al. Variation in Resistance of Natural Isolates of Escherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses [J]. Appl Environ Microb, 1999, 65(4): 1564-1569.
    [27] Chia L S, McRae D C, Thompson J E. Light-Dependence of Paraquat-Initiated Membrane Deterioration in Bean Plant. Evidence for the Involvement of Surperoxide [J]. Physiologia Plantarun, 1982, 56: 492-499.
    [28] Moran J F, Becana M, Iturbe-Ormaetxe I, et al. Drought Induces Oxidative Stress in Pea Plant [J]. Planta, 1994, 194: 346-352.
    [29] Alscher R G, Hess J L. Antioxidants in Higher Plant [M]. Boca Raton: CRC Press, 1993. 59-60.
    [30] Kayo C, Smorawinaka M, Li L, et al. Comparison of the Gene Expression of Aspartate Bate-D-Smialdehyde Dehydrogenase at Elevated Hydrostatic Pressure in Deep-Sea [J]. Bacteria J Biochem, 1997, 121(4): 717-723.
    [31] Gordon W N, Christopher A M, Bernard M M. The Effects of Hydrostatic Pressure on Ribosome Conformation in Escherichia coli: An in Vivo Study Using Differential Scanning Calorimetry [J]. Microbiology, 1999, 145: 419-425.
    [32] Fernandes P M B, Domitrovic T, Kao C M, et al. Genomic Expression Pattern in Saccharomyces Cerevisiae Cells in Response to High Hydrostatic Pressure [J]. FEBS Letters, 2004, 556: 153-160.
  • [1] 申斯乐徐世平翁克难谭梅张剑锋龙国徽贾晓鹏池元斌刘宝邹广田 . 高静水压处理水稻诱导稳定遗传变异系的DNA分析. 高压物理学报, 2004, 18(4): 289-294 . doi: 10.11858/gywlxb.2004.04.001
    [2] 李桂双白成科段俊彭长连 . 高静水压诱导水稻产生突变的研究. 高压物理学报, 2006, 20(4): 421-428 . doi: 10.11858/gywlxb.2006.04.014
    [3] 李桂双白成科段俊彭长连翁克难刘曙东 . 静水高压处理对水稻植株生理特性的影响. 高压物理学报, 2003, 17(2): 122-128 . doi: 10.11858/gywlxb.2003.02.008
    [4] 施伟光吴慧杰周国强姜奇峰崔银秋刘晓旸 . 高静水压诱导黄瓜稳定遗传变异系的分子分析. 高压物理学报, 2011, 25(4): 379-384 . doi: 10.11858/gywlxb.2011.04.015
    [5] 陈毅黄勇军费腾 . 10 MPa静水压下20 Hz~200 kHz标准水听器校准. 高压物理学报, 2013, 27(3): 454-460. doi: 10.11858/gywlxb.2013.03.021
    [6] 易建勇孙传范王永涛董鹏王换玉胡小松 . 超高静水压装置的研制及钝酶效果试验. 高压物理学报, 2012, 26(4): 375-381. doi: 10.11858/gywlxb.2012.04.003
    [7] 徐世平廖耀平翁克难肖万生陈钊明律广才何秀英 . 水稻压致变异和高压对水稻生长发育的影响. 高压物理学报, 2001, 15(4): 241-248 . doi: 10.11858/gywlxb.2001.04.001
    [8] 徐世平郭丽秀翁克难段俊律广才 . 水稻高压诱变与突变体的ISSR分析. 高压物理学报, 2005, 19(4): 305-311 . doi: 10.11858/gywlxb.2005.04.004
    [9] 刘勋成张美段俊 . 水稻种子萌发期高压诱导的SSH-cDNA文库构建与分析. 高压物理学报, 2008, 22(4): 370-376 . doi: 10.11858/gywlxb.2008.04.006
    [10] 白成科李桂双段俊彭长连段中岗翁克难徐世平 . 高静水压对水稻种子萌发及同工酶的影响. 高压物理学报, 2003, 17(4): 283-289 . doi: 10.11858/gywlxb.2003.04.007
    [11] 查长生赵叔晖 . 126.5 GPa准静水压下的光谱学实验. 高压物理学报, 1990, 4(1): 42-49 . doi: 10.11858/gywlxb.1990.01.007
    [12] 冉翔天贺端威刘景王齐明王培王江华陈海花彭放 . 非静水压下不同强度材料的应力传递特性. 高压物理学报, 2013, 27(2): 205-210. doi: 10.11858/gywlxb.2013.02.006
    [13] 刘振先崔启良邹广田 . 90 GPa(准)静水压力的产生及压力分布的测量. 高压物理学报, 1989, 3(4): 284-289 . doi: 10.11858/gywlxb.1989.04.004
    [14] 张强彭放刘冬琼樊聪梁浩管诗雪谭立洁 . 非静水压下材料强度对压力标定的影响. 高压物理学报, 2017, 31(4): 353-357. doi: 10.11858/gywlxb.2017.04.001
    [15] 王莉君Ming L CManghnani M H . -Fe2SiO4在静水压下的压缩行为的测定. 高压物理学报, 1994, 8(4): 290-295 . doi: 10.11858/gywlxb.1994.04.008
    [16] 周波王汝菊张友林李凤英禹日成靳常青 . MgCNi3超导体在静水压下的弹性性质. 高压物理学报, 2003, 17(2): 157-160 . doi: 10.11858/gywlxb.2003.02.015
    [17] 张毅毕延蔡灵仓徐济安 . 静水压加载单晶MgO的超声测量与压力标定. 高压物理学报, 2010, 24(3): 206-212 . doi: 10.11858/gywlxb.2010.03.008
    [18] 池元斌马小凡崔田崔启良金曾孙 . 静水压对牛奶中细菌生长繁殖的影响. 高压物理学报, 1995, 9(3): 224-227 . doi: 10.11858/gywlxb.1995.03.011
    [19] 白腾辉马汉军潘润淑刘本国马亚萍郝振宇 . 高压处理对酪蛋白酶解产物抗氧化活性的影响. 高压物理学报, 2015, 29(6): 467-474. doi: 10.11858/gywlxb.2015.06.010
    [20] 涂宗财张露王辉叶云花李志黄小琴 . 动态高压微射流提取对红薯叶黄酮抗氧化性的影响. 高压物理学报, 2013, 27(3): 431-438. doi: 10.11858/gywlxb.2013.03.018
  • 加载中
计量
  • 文章访问数:  2038
  • 阅读全文浏览量:  5
  • PDF下载量:  1029
出版历程
  • 收稿日期:  2004-08-05
  • 录用日期:  2004-11-26
  • 刊出日期:  2005-09-05

高压处理后水稻抗氧化酶活性及对逆境胁迫的响应

    通讯作者: 段俊; 
  • 1. 中国科学院华南植物园,广东广州 510650;
  • 2. 陕西师范大学生命科学学院,陕西西安 710062;
  • 3. 华南师范大学生命科学学院,广东广州 510631;
  • 4. 中国科学院广州地球化学研究所,广东广州 510640

摘要: 对经高静水压处理的水稻粤香占(Oryza sativa L. cv. Yuexiangzhan)种子播种后的植株进行了抗氧化酶活性的测定和对逆境胁迫响应的研究。结果表明,高压处理抑制了水稻生长早期(12 d)色素和蛋白质含量的增加,并使早期抗氧化酶活性表现较对照低。随着播种天数增加,经高压处理的材料中的色素、蛋白质含量不同程度地增加,抗氧化酶活性发生改变,至播种后32 d时,高压处理的叶绿素含量和可溶性蛋白含量都高于对照粤香占。在自然低温条件下,经高压(干压、湿压)处理的植株其Rubisco大、小亚基含量和光合色素含量较高,抗光抑制能力增强,具一定的耐低温性。

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回