聚晶金刚石复合体超高压液相烧结理论研究

邓福铭 赵国刚 王振廷 郭港 刘晓慧 陈启武

引用本文:
Citation:

聚晶金刚石复合体超高压液相烧结理论研究

    通讯作者: 邓福铭; 

Theoretical Study on High Pressure Liquid Sintering of Polycrystalline Diamond Compact

    Corresponding author: DENG Fu-Ming
  • 摘要: 在对前人有关聚晶金刚石超高压烧结机理的综合分析与评价的基础上,通过对金刚石与不同组分的钴熔体相互作用规律,及金刚石从钴熔体中的结晶热力学与动力学的理论研究,提出了石墨优先金刚石溶解和金刚石石墨化溶解的观点,阐明了钴熔体的性质对金刚石(石墨)的浸润扩散溶解过程,以及金刚石再结晶析出过程的影响,认为在金刚石-钴烧结系统中存在三种主要烧结机构:颗粒重排,溶解-析出和聚晶固架形成机构。不同温度条件下不同碳含量钴熔体在烧结过程中,对于促进金刚石表面石墨化,进一步引起颗粒重排,实现sp3结构碳原子在金刚石颗粒间的有效迁移传递以及D-D直接结合等方面起到了十分重要的作用。根据上述金刚石超高压液相烧结理论的基本观点,可较合理地解释聚晶金刚石复合体(PDC)在超高压烧结过程中观察到的一些基本现象和实验事实。
  • [1] Delai. Diamond Compact Abrasive [P]. US Pat, 3, 141, 746, 1964.
    [2] Hall H T. Sintered Diamond: A Synthetic Carbonado [J]. Science, 1970, 169: 868.
    [3] Darrow K A. Method for the Production of Diamond Compact Abrasives [P]. US Pat, 3, 306, 702, 1965.
    [4] Wilison W I. Diamond and Cubic Boron Nitride Abrasive Compacts and Conglomerates [P]. US Pat, 4, 219, 339, 1967.
    [5] ダイセモドの烧结にする研究 [R]. 日本: 无机材料研究所, 1984. 3-15.
    [6] Shen Z T, Wang L J, Yang Y J, et al. High Pressure Sintering Mechanism of Polycrystalline Diamond [J]. Acta Physica Sinica, 1978, 27(3): 344-347(in Chinese)
    [7] 沈主同, 王莉君, 杨奕娟, 等. 高压下多晶体金刚石的烧结机制 [J]. 物理学报, 1978, 27(3): 344-347.
    [8] Zhao Y L, Zhao S Z. A Study on the Sintering Mechanism of Diamond [A]. Chen Q W. Theses of Conference on Superhard Materials in 2001 [C]. Changsha: Superhard Materials Association of Hunan Province, 2001. 10-24(in Chinese)
    [9] 赵云良, 赵爽之. 金刚石烧结机理的探讨 [A]. 陈启武. 超硬材料论文集 [C]. 长沙: 湖南省超硬材料协会, 2001. 10-24.
    [10] Hall H T. Diamond-Nondiamond Carbon Polycrystalline Composite [P]. US Pat, 3, 816, 085, 1966.
    [11] Lammer A. Mechanical Properties of Polycrystalline Diamonds [J]. Materials Science and Technology, 1988, 4: 949-955.
    [12] Bex P A, Wilson W I. Syndite-The New Isotropic Diamond [J]. Industrial Diamond Review, 1977, 1: 10-16.
    [13] Walmsley J C, Lang A R. Characteristic of Diamond Regrowth in a Synthetic Diamond Compact [J]. J Mater Sci, 1988, 23: 1829-1834.
    [14] Davey S T, Evans T, Robertson S H. An Investigation of Plastic Deformation in Sintered Diamond Compacts Using Photoluminescence Spectroscopy [J]. J Mater Sci Lett, 1984, 3: 1090-1092.
    [15] Akaaishi M, Kanda H. Sintering Behavior of the Diamond-Cobalt System at High Temperature and Pressure [J]. J Mater Sci, 1982, 17: 193-198.
    [16] Shen Z T, Sun G X, Chi Y Q, et al. Study on Bonding of the Interface of Sintered Diamond and the New Type of Polycrystalline Diamond [J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 104-111. (in Chinese)
    [17] 沈主同, 孙帼显, 池用谦, 等. 高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究 [J]. 高压物理学报, 1988, 2(2): 104-111.
    [18] Naka S, Itho H, Tsutsui T. Reaction Sintering of Diamond Using a Binary Solvent-Catalyst of the Fe-Ti System [J]. J Mater Sci, 1987, 22: 1753-1757.
    [19] Hong S M, Akaishi M, et al. Behavior of Cobalt Infiltration and Abnormal Grain Growth During Sintering of Diamond on Cobalt Substrate [J]. J Mater Sci, 1988, 23: 3821-3826.
    [20] Deng F M, Chen X H, Chen Q W. Research on the Abnormal Growth of Diamond Crystal and Restraining Mechanism of the Same during HP/HT Sintering of PDC [J]. Diamond and Abrasives Engineering, 2001, 122(2): 5-9. (in Chinese)
    [21] 邓福铭, 陈小华, 陈启武. PDC 材料超高压烧结中聚晶金刚石晶粒异常生长及其抑制机制 [J]. 金刚石与磨料磨具工程, 2001, 122(2): 5-9.
    [22] Katzman H K, Libby W F. Sintered Diamond Compacts with a Cobalt Binder [J]. Science, 1971, 172: 1132-1134.
    [23] Caнжал H . Цнский, докл, АНСССР, 1981, 259(5): 1106-1109.
    [24] Liu G Z, Fong C D, Xue Z L. The Mechanism of Synthetic Diamond Growth from Solution [J]. Journal of Chinese Ceramic Society, 1984, 12(1): 91-95. (in Chinese)
    [25] 刘光照, 冯楚德, 薛志麟. 人造金刚石的溶液生长机制 [J]. 硅酸盐学报, 1984, 12(1): 91-95.
    [26] Найдич Ю В, Колеченко Г А. Взаимодействие Металличеоких Раеплавов С Поверхностъю Алмаза и Графита (in Russian. Interpreted by Lu Z T) [J]. J Synthetic Crystals, 1978, 11(1): 71-79. (in Chinese)
    [27] 奈基奇 Ю В, 科列斯尼钦科 Г А. 熔融金属与金刚石(石墨)表面的相互作用(卢照田译) [J]. 人工晶体, 1978, 11(1): 71-79.
    [28] Xie Y Z. Synthesizing Theory and Technology of Diamond [M]. Changsha: Hunan Science and Technology Press, 1993: 9. (in Chinese)
    [29] 谢有赞. 金刚石理论与合成技术 [M]. 长沙: 湖南科学技术出版社, 1993: 9.
    [30] Allen B C, Kingery W D. Surface Tension and Contact Angles in Some Liquid Metal-Solid Ceramic System at Elevated Temperatures [J]. Trans AIME, 1959, 30: 215.
    [31] Feng S Y, Qiu S Z, Li B X. On the Graphitization of Diamond Surfaces during the Sintering of Polycrystalline Diamond [J]. J Synthetic Crystals, 1987, 16(3): 238-242. (in Chinese)
    [32] 冯时雍, 邱淑蓁, 李伯勋. 多晶烧结过程中金刚石表面石墨化研究 [J]. 人工晶体学报, 1987, 16(3): 238-242.
    [33] Deng F M. Graphitization Process of Diamond Surfaces during the Sintering of Diamond-Cobalt System under HP/HT [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 235-239. (in Chinese)
    [34] 邓福铭. 超高压高温烧结中金刚石表面石墨化过程再研究 [J]. 高压物理学报, 2001, 15(3): 235-239.
    [35] Shen Z T. The Effect of Molten Catalyst in the Process of Synthesizing Diamond [J]. J Synthetic Crystals, 1986, 15(4): 288. (in Chinese)
    [36] 沈主同. 人造金刚石过程中的熔媒效应 [J]. 人工晶体, 1986, 15(4): 288.
    [37] Wang S Q. Research on Nucleation Control during the Synthesis of Diamond under HP/HT [D]. Changsha: Central South University of Technology, 1997: 29-32. (in Chinese)
    [38] 王四清. 金刚石高压合成中的控制形核研究 [D]. 长沙: 中南工业大学粉末冶金研究所, 1997: 29-32.
    [39] Lin M X, Li Y H. Thick-Grain Diamond's Growth and Ascertainment of Its Thermodynamic Conditions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 36-42. (in Chinese)
    [40] 林铭西, 李英华. 粗粒金刚石的生长及热力学的条件的确定 [J]. 高压物理学报, 1994, 8(1): 36-42.
    [41] Deng F M, Chen Q W, Huan P Y. On the Crushing Rule of Diamond Powder under High Pressure [J]. J Superhard Materials and Enineering, 1998, 4: 9-15. (in Chinese)
    [42] 邓福铭, 陈启武, 黄培云. 金刚石粉末超高压挤压破碎规律研究 [J]. 超硬材料与工程, 1998, 4: 9-15.
    [43] Huang P Y. On the Principle of Powder Metallurgy [M]. Beijing: Metallurgy Industry Press, 1982: 308-309. (in Chinese)
    [44] 黄培云. 粉末冶金原理 [M]. 北京: 冶金工业出版社, 1982: 308-309.
  • [1] 张兴栋彭应聪邱淑蓁李伯勋左长明 . 多晶金刚石烧结中晶粒表面石墨化的实验研究. 高压物理学报, 1989, 3(2): 125-131 . doi: 10.11858/gywlxb.1989.02.004
    [2] 邓福铭 . 超高压高温烧结中金刚石表面石墨化过程再研究. 高压物理学报, 2001, 15(3): 235-240 . doi: 10.11858/gywlxb.2001.03.012
    [3] 陈鹏万恽寿榕黄风雷丁雁生陈权 . 金刚石的石墨化及其对炸药爆轰合成超微金刚石产出率的影响. 高压物理学报, 2001, 15(1): 32-38 . doi: 10.11858/gywlxb.2001.01.005
    [4] 丁立业陈江华魏晓莉 . 金属包裹体的变化及对人造金刚石强度的影响. 高压物理学报, 1990, 4(2): 96-104 . doi: 10.11858/gywlxb.1990.02.004
    [5] 王德新刘培銮焦庆余薛永进杨国清 . 掺杂烧结金刚石聚晶致密化试验. 高压物理学报, 1988, 2(1): 89-91 . doi: 10.11858/gywlxb.1988.01.013
    [6] 徐国平尹志民陈启武黄继武 . 聚晶金刚石复合片超高压烧结过程的实验研究. 高压物理学报, 2011, 25(3): 200-206 . doi: 10.11858/gywlxb.2011.03.002
    [7] 陈德元金孝刚杨慕松 . 多次冲击石墨合成聚晶金刚石的实验研究. 高压物理学报, 1992, 6(2): 127-135 . doi: 10.11858/gywlxb.1992.02.006
    [8] 王德新薛永进焦庆余刘培銮 . 烧结型金刚石聚晶抗氧化性研究. 高压物理学报, 1987, 1(2): 184-187 . doi: 10.11858/gywlxb.1987.02.013
    [9] 张亚菲陈光华 . 金刚石和石墨之间相转变几率的研究. 高压物理学报, 1995, 9(2): 155-160 . doi: 10.11858/gywlxb.1995.02.012
    [10] 张万甲 . 冲击引起石墨金刚石相转变机理的探讨. 高压物理学报, 2004, 18(3): 209-219 . doi: 10.11858/gywlxb.2004.03.004
    [11] 周振君李工杨正方陈玉如 . 掺杂立方氮化硼对金刚石聚晶致密化和显微结构的影响. 高压物理学报, 2001, 15(3): 229-234 . doi: 10.11858/gywlxb.2001.03.011
    [12] 王德新焦庆余王福泉郑振凯 . 真空净化处理对掺杂烧结型金刚石聚晶耐磨性的影响. 高压物理学报, 1989, 3(4): 315-320 . doi: 10.11858/gywlxb.1989.04.009
    [13] 邓福铭陈启武 . PDC材料烧结过程中钴在金刚石层中的扩散熔渗迁移机制. 高压物理学报, 2004, 18(1): 53-58 . doi: 10.11858/gywlxb.2004.01.010
    [14] 于鸿昌李尚劼 . 烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响. 高压物理学报, 1989, 3(3): 221-225 . doi: 10.11858/gywlxb.1989.03.007
    [15] 张文凯彭放郭振堂管俊伟李荣祺 . 高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究. 高压物理学报, 2012, 26(3): 306-312. doi: 10.11858/gywlxb.2012.03.010
    [16] 杨宝德缪青维 . 金刚石聚晶复合片自锐性能的试验研究. 高压物理学报, 1992, 6(3): 235-239 . doi: 10.11858/gywlxb.1992.03.013
    [17] 金曾孙吕宪义张铁臣邹广田 . 用表面生长CVD金刚石的石墨合成高压金刚石. 高压物理学报, 1994, 8(1): 65-68 . doi: 10.11858/gywlxb.1994.01.011
    [18] 徐国平陈启武尹志民徐根 . 金刚石层厚度对复合片(PDC)残余应力的影响. 高压物理学报, 2009, 23(1): 24-30 . doi: 10.11858/gywlxb.2009.01.004
    [19] 王金斌杨国伟 . 脉冲激光诱导液-固界面反应合成金刚石纳米晶中的结构相变模型. 高压物理学报, 1999, 13(2): 147-151 . doi: 10.11858/gywlxb.1999.02.012
    [20] 黄新明何寿安王文魁 . 非晶La80Al20晶化相的超导电性. 高压物理学报, 1987, 1(2): 130-137 . doi: 10.11858/gywlxb.1987.02.005
  • 加载中
计量
  • 文章访问数:  2771
  • 阅读全文浏览量:  24
  • PDF下载量:  984
出版历程
  • 收稿日期:  2003-10-15
  • 录用日期:  2004-01-13
  • 刊出日期:  2004-09-05

聚晶金刚石复合体超高压液相烧结理论研究

    通讯作者: 邓福铭; 
  • 1. 中国矿业大学(北京校区)材料科学与工程系,北京 100083;
  • 2. 黑龙江科技学院,黑龙江哈尔滨 150027

摘要: 在对前人有关聚晶金刚石超高压烧结机理的综合分析与评价的基础上,通过对金刚石与不同组分的钴熔体相互作用规律,及金刚石从钴熔体中的结晶热力学与动力学的理论研究,提出了石墨优先金刚石溶解和金刚石石墨化溶解的观点,阐明了钴熔体的性质对金刚石(石墨)的浸润扩散溶解过程,以及金刚石再结晶析出过程的影响,认为在金刚石-钴烧结系统中存在三种主要烧结机构:颗粒重排,溶解-析出和聚晶固架形成机构。不同温度条件下不同碳含量钴熔体在烧结过程中,对于促进金刚石表面石墨化,进一步引起颗粒重排,实现sp3结构碳原子在金刚石颗粒间的有效迁移传递以及D-D直接结合等方面起到了十分重要的作用。根据上述金刚石超高压液相烧结理论的基本观点,可较合理地解释聚晶金刚石复合体(PDC)在超高压烧结过程中观察到的一些基本现象和实验事实。

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回