双面爆炸焊接的数值模拟

缪广红 李亮 江向阳 刘文震 李雪交 汪泉 余勇 沈兆武

缪广红, 李亮, 江向阳, 刘文震, 李雪交, 汪泉, 余勇, 沈兆武. 双面爆炸焊接的数值模拟[J]. 高压物理学报, 2018, 32(4): 045202. doi: 10.11858/gywlxb.20180513
引用本文: 缪广红, 李亮, 江向阳, 刘文震, 李雪交, 汪泉, 余勇, 沈兆武. 双面爆炸焊接的数值模拟[J]. 高压物理学报, 2018, 32(4): 045202. doi: 10.11858/gywlxb.20180513
MIAO Guanghong, LI Liang, JIANG Xiangyang, LIU Wenzhen, LI Xuejiao, WANG Quan, YU Yong, SHEN Zhaowu. Numerical Simulation of Double-Sided Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045202. doi: 10.11858/gywlxb.20180513
Citation: MIAO Guanghong, LI Liang, JIANG Xiangyang, LIU Wenzhen, LI Xuejiao, WANG Quan, YU Yong, SHEN Zhaowu. Numerical Simulation of Double-Sided Explosive Welding[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045202. doi: 10.11858/gywlxb.20180513

双面爆炸焊接的数值模拟

doi: 10.11858/gywlxb.20180513
基金项目: 

国家自然科学基金 51374189

国家自然科学基金 11502001

安徽省高校自然科学基金重点项目 KJ2017A089

安徽省高校自然科学基金重点项目 KJ2018A0090

安徽省自然科学基金 1708085QA17

安徽省自然科学基金 1808085QA06

详细信息
    作者简介:

    缪广红(1985-), 男, 博士, 讲师, 主要从事含能材料、爆炸复合及爆炸力学相关领域研究.E-mail:miaogh@mail.ustc.edu.cn

  • 中图分类号: O389;TJ55

Numerical Simulation of Double-Sided Explosive Welding

  • 摘要: 双面爆炸焊接一次起爆可同时焊接两组复合板,而且使炸药临界厚度显著降低,提高了炸药的能量利用率,解决了爆炸焊接现存的高噪低效问题。借助ANSYS/LS-DYNA动力学分析软件,运用光滑粒子流体动力学方法(SPH)与有限元(FEM)耦合算法,对双面爆炸焊接进行了三维数值模拟,并将模拟结果与实验结果和理论计算结果进行了对比。结果表明,数值模拟结果与实验结果较吻合,且与Deribas的理论计算结果一致性较好,说明Deribas公式和SPH-FEM耦合方法对双面爆炸焊接具有较好的指导意义。

     

  • 图  计算模型Ⅰ(10 mm药厚)

    Figure  1.  Calculation model Ⅰ with explosive thickness of 10 mm

    图  计算模型Ⅱ(5 mm药厚)

    Figure  2.  Calculation model Ⅱ with explosive thickness of 5 mm

    图  10 mm药厚下爆炸焊接结束时复板的z向位移云图

    Figure  3.  z-direction displacement contour of flyer plate with explosive thickness of 10 mm at the end of explosive welding

    图  10 mm药厚下复板上3个特征单元的z向位移-时间历程

    Figure  4.  z-direction displacement histories of 3 characteristic elements with explosive thickness of 10 mm

    图  10 mm药厚下的一对特征单元

    Figure  5.  A pair of characteristic elements with explosive thickness of 10 mm

    图  一对特征单元(见图 5)的速度-时间曲线

    Figure  6.  Velocity-time curves of the pair of characteristic elements (see Fig. 5)

    图  10 mm药厚下复板结合界面处的3个特征单元

    Figure  7.  3 characteristic elements at the bonding interface of flyer plate with explosive thickness of 10 mm

    图  10 mm药厚下3个特征单元的速度-时间曲线

    Figure  8.  Velocity-time curves of 3 characteristic elements with explosive thickness of 10 mm

    图  10 mm药厚下复板结合界面处的3个特征单元

    Figure  9.  3 characteristic elements at the bonding interface of flyer plate with explosive thickness of 10 mm

    图  10  10 mm药厚下3个特征单元的压力-时间曲线

    Figure  10.  Pressure-time curves of 3 characteristic elements with explosive thickness of 10 mm

    图  11  5 mm药厚下爆炸复合结束时复板的z向位移云图

    Figure  11.  z-displacement contour of flyer plate with explosive thickness of 5 mm at the end of explosive welding

    图  12  5 mm药厚下复板上特征单元的z向位移-时间历程

    Figure  12.  z-displacement histories of 3 characteristic elements with explosive thickness of 5 mm

    图  13  5 mm药厚下的一对特征单元

    Figure  13.  A pair of characteristic elements with explosive thickness of 5 mm

    图  14  一对特征单元(见图 13)的速度-时间曲线

    Figure  14.  Velocity-time curves of the pair of characteristic elements (see Fig. 13)

    图  15  5 mm药厚下复板结合界面处的3个特征单元

    Figure  15.  3 characteristic elements at the bonding interface of flyer plate with explosive thickness of 5 mm

    图  16  5 mm药厚下3个特征单元的速度-时间曲线

    Figure  16.  Velocity-time curves of 3 characteristic elements with explosive thickness of 5 mm

    图  17  5 mm药厚下复板结合界面处的3个特征单元

    Figure  17.  3 characteristic elements at the bonding interface of flyer plate with explosive thickness of 5 mm

    图  18  5 mm药厚下3个特征单元的压力历程

    Figure  18.  Pressure histories of 3 characteristic elements with explosive thickness of 5 mm

    表  1  计算模型中材料的相关参数

    Table  1.   Related parameters of materials in calculation models

    Calculationmodel Flyer plate Base plate Gap
    δ/mm
    Size of explosive/(mm×mm×mm)
    Material Size/(mm×mm×mm) Material Size/(mm×mm×mm)
    45 steel 300×150×2 Q235 300×150×16 6 300×150×10
    45 steel 300×150×2 Q235 300×150×16 6 300×150×5
    下载: 导出CSV

    表  2  乳化炸药的JWL状态参数[13]

    Table  2.   JWL equation-of-state parameters of emulsion explosives[13]

    ρ/(g·cm-3) D/(m·s-1) AJWL/GPa BJWL/GPa R1 R2 ω E0/(kJ·cm-3)
    1.12 4 510 326.42 5.808 9 5.80 1.56 0.57 3.323
    下载: 导出CSV

    表  3  Q235钢的Johnson-Cook模型参数[16]

    Table  3.   Johnson-Cook parameters of Q235 steel[16]

    ρ/(g·cm-3) G/GPa A/GPa B/GPa C n m Tm/K Tr/K
    7.83 77 0.792 0.51 0.014 0.26 1.03 1 793 294
    下载: 导出CSV

    表  4  10 mm药厚下碰撞速度理论计算结果与数值模拟结果的比较

    Table  4.   Comparison of collision velocity between theoretical calculation and numerical simulation with explosive thickness of 10 mm

    Theoreticalformula Massfraction Collision velocity/(m·s-1) Error/%
    Theoretical calculation[18] Simulation
    Gurney 0.75 1 089 897 -21.0
    Aziz 0.75 711 897 20.0
    Deribas 0.75 853 897 4.9
    下载: 导出CSV

    表  5  5 mm药厚下碰撞速度理论计算结果与数值模拟结果的比较

    Table  5.   Comparison of collision velocity between theoretical calculation and numerical simulation with explosive thickness of 5 mm

    Theoreticalformula Massfraction Collision velocity/(m·s-1) Error/%
    Theoretical calculation[18] Simulation
    Gurney 0.45 863 565 -52.7
    Aziz 0.45 480 565 15.0
    Deribas 0.45 576 565 -1.9
    下载: 导出CSV

    表  6  10 mm药厚下碰撞压力理论计算结果与数值模拟结果的比较

    Table  6.   Comparison of collision pressure betweentheoretical calculation and numerical simulationwith explosive thickness of 10 mm

    Theoreticalformula Collision pressure/GPa Error/%
    Calculation Simulation
    Gurney 22.08 17.08 -29.3
    Aziz 14.42 17.08 15.6
    Deribas 17.30 17.08 -1.3
    下载: 导出CSV

    表  7  5 mm药厚下碰撞压力理论计算结果与数值模拟结果的比较

    Table  7.   Comparison of collision pressure betweentheoretical calculation and numerical simulationwith explosive thickness of 5 mm

    Theoreticalformula Collision pressure/GPa Error/%
    Calculation Simulation
    Gurney 17.50 11.25 -55.6
    Aziz 9.73 11.25 13.5
    Deribas 11.68 11.25 -3.8
    下载: 导出CSV
  • [1] JOHNSON G R, PETERSON E H, STRYK R A.Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations[J].International Journal of Impact Engineering, 1993, 14(1/2/3/4):385-394. http://www.sciencedirect.com/science/article/pii/0734743X93900367
    [2] JOHNSON G R, STRYK R A, BEISSEL S R, et al.An algorithm to automatically convert distorted finite elements into meshless particle during dynamics deformation[J].International Journal of Impact Engineering, 2002, 27(10):997-1013. doi: 10.1016/S0734-743X(02)00030-1
    [3] ATTAWAY S W, HEINSTEIN M, SWEGLE J.Coupling of smoothed particle hydrodynamics with the finite element method[J].Nuclear Engineering and Design, 1994, 150(2/3):199-205. http://www.sciencedirect.com/science/article/pii/0029549394901368
    [4] TANAKA K. Numerical studies on the explosive welding by smoothed particle hydrodynamis[C]. Materials Science Forum, 2007, 566: 61-64. http://meetings.aps.org/link/BAPS.2007.SHOCK.V2.7
    [5] 李晓杰, 莫非, 闫鸿浩, 等.爆炸焊接界面波的数值模拟[J].爆炸与冲击, 2011, 31(6):653-657. http://www.oalib.com/paper/4137328

    LI X J, MO F, YAN H H, et al.Numerical simulation of interface waves in steel explosive welding[J].Explosion and Shock Waves, 2011, 31(6):653-657. http://www.oalib.com/paper/4137328
    [6] 张登霞, 李国豪.低碳钢爆炸焊接界面波与板材无量纲强度关系的试验研究[J].爆炸与冲击, 1983, 3(2):23-29. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SPDE201210003054.htm

    ZHANG D X, LI G H.An experimental relation between interface wave form of explosion welding mild steel and material[J].Explosion and Shock Waves, 1983, 3(2):23-29. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SPDE201210003054.htm
    [7] 张登霞, 李国豪, 周之洪, 等.材料强度在爆炸焊接界面波形成过程中的作用[J].力学学报, 1984, 16(1):73-80. http://www.irgrid.ac.cn/handle/1471x/4082

    ZHANG D X, LI G H, ZHOU Z H, et al.Effect of material strength on forming process of explosive welding interface wave[J].Chinese Journal of Theoretical and Applied Mechanics, 1984, 16(1):73-80. http://www.irgrid.ac.cn/handle/1471x/4082
    [8] 刘江, 郑远远, 沈宗宝.基于SPH方法的爆炸焊接过程模拟[J].焊接技术, 2013, 42(12):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hanjiejs201312005

    LIU J, ZHENG Y Y, SHEN Z B.Simulation of explosive welding process by using of the SPH[J].Welding Technology, 2013, 42(12):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hanjiejs201312005
    [9] 缪广红, 马宏昊, 沈兆武, 等.蜂窝结构炸药及其应用[J].含能材料, 2014, 22(5):693-697. http://www.cnki.com.cn/Article/CJFDTotal-HNCL201405025.htm

    MIAO G H, MA H H, SHEN Z W, et al.Explosives with structure of honeycomb and its application[J].Chinese Journal of Energetic Materials, 2014, 22(5):693-697. http://www.cnki.com.cn/Article/CJFDTotal-HNCL201405025.htm
    [10] 章冠人, 陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社, 1991.
    [11] 肖定军, 郭学彬, 蒲传金.单孔护壁爆破数值模拟[J].化工矿物与加工, 2008(7):22-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkwyjg200807007

    XIAO D J, GUO X B, PU C J.Numerical simulation for single hole-unilateral blasting[J].Industrial Minerals & Processing, 2008(7):22-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkwyjg200807007
    [12] 李裕春, 时党勇, 赵远.ANSYS11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社, 2008.
    [13] 宋锦泉. 乳化炸药爆轰特性研究[D]. 北京: 北京科技大学, 2000.

    SONG J Q. Research on detonation characteristics of emulsion explosives[D]. Beijing: University of Science and Technology Beijing, 2000.
    [14] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 译. 长沙: 湖南大学出版社, 2005.
    [15] 程国强, 李守新.金属材料在高应变率下的热粘塑性本构模型[J].弹道学报, 2004, 11(6):18-22. https://www.wenkuxiazai.com/doc/3935ac1dfad6195f312ba6c0.html

    CHENG G Q, LI S X.A thermo-viscoplastic constitutive model of metallic materials at high strain rates[J].Journal of Ballistics, 2004, 11(6):18-22. https://www.wenkuxiazai.com/doc/3935ac1dfad6195f312ba6c0.html
    [16] 时党勇, 李裕春, 张胜民.基于ANSYS/LS-DYNA8.1进行显示动力学分析[M].北京:清华大学出版社报, 2005.
    [17] 缪广红, 李亮, 江向阳, 等.爆炸复合界面波形变化的数值模拟研究[J].煤矿爆破, 2017(3):1-4. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070793.htm

    MIAO G H, LI L, JIANG X Y, et al.Numerical simulation on interface waves variation in explosive welding[J].Coal Mine Blasting, 2017(3):1-4. http://cdmd.cnki.com.cn/Article/CDMD-10141-2005070793.htm
    [18] 缪广红, 王章文, 周任俊, 等.双面爆炸复合理论计算与实验结果的对比研究[J].爆破, 2017, 34(2):117-120. https://www.doc88.com/p-4377429453267.html

    MIAO G H, WANG Z W, ZHOU R J, et al.Comparative study on theoretical calculation and experimental results of double-sided explosive cladding[J].Blasting, 2017, 34(2):117-120. https://www.doc88.com/p-4377429453267.html
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  6867
  • HTML全文浏览量:  2987
  • PDF下载量:  310
出版历程
  • 收稿日期:  2018-02-01
  • 修回日期:  2018-03-02

目录

    /

    返回文章
    返回