岩石材料冲击开坑行为研究

伍杨 张先锋 徐晨阳 王舒 覃彬

伍杨, 张先锋, 徐晨阳, 王舒, 覃彬. 岩石材料冲击开坑行为研究[J]. 高压物理学报, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014
引用本文: 伍杨, 张先锋, 徐晨阳, 王舒, 覃彬. 岩石材料冲击开坑行为研究[J]. 高压物理学报, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014
WU Yang, ZHANG Xian-Feng, XU Chen-Yang, WANG Shu, QIN Bin. Deformation of Rock Material Target under High Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014
Citation: WU Yang, ZHANG Xian-Feng, XU Chen-Yang, WANG Shu, QIN Bin. Deformation of Rock Material Target under High Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 603-612. doi: 10.11858/gywlxb.2017.05.014

岩石材料冲击开坑行为研究

doi: 10.11858/gywlxb.2017.05.014
基金项目: 

装备发展部预研基金 6142606010103

详细信息
    作者简介:

    伍杨(1990—),男,硕士,工程师,主要从事冲击动力学防护毁伤性能研究.E-mail:vandrew@163.com

  • 中图分类号: O383

Deformation of Rock Material Target under High Velocity Impact

  • 摘要: 岩石材料的含孔隙、含水等细观特性对其宏观动力学性能有十分重要的影响,进而影响岩石材料的冲击开坑等动力学行为。采用实验研究和数值仿真分析相结合的方法,围绕含水岩石和干燥岩石的动态力学性能,研究岩石材料的冲击飞溅特性和成坑形态。基于高速破片发射平台,开展岩石材料的冲击开坑实验,分析对比含水岩石和干燥岩石在高速冲击下的开坑效应,以及冲击后成坑形态和喷溅效果。基于实验结果,进行了高速冲击开坑数值模拟研究。研究结果表明:在高速冲击开坑中,含水岩石的坑深小于干燥岩石,其形成的圆锥角度和喷溅速度均大于干燥岩石;岩石的细观特性可以很好地反映宏观力学响应,水的存在弱化了孔隙的作用,对岩石材料的动态力学性能有显著的影响。

     

  • 图  高速开坑实验布局示意图

    Figure  1.  Schematic of hypervelocity impact cratering experiment

    图  岩石试样

    Figure  2.  Sandstone specimen

    图  不同时间步干燥岩石在弹丸高速冲击下的喷溅形态

    Figure  3.  Evolution of ejection for dry sandstone at different time steps

    图  不同时间步含水岩石在弹丸高速冲击下的喷溅形态

    Figure  4.  Evolution of ejection for wet sandstone at different time steps

    图  含水黄砂岩高速开坑实验结果

    Figure  5.  Result of impact cartering of wet sandstone

    图  干燥黄砂岩(3号)高速开坑实验结果

    Figure  6.  Results of impact cratering of dry sandstones (No.3) at high speed

    图  干燥黄砂岩(2号)高速开坑实验结果

    Figure  7.  Results of impact cratering of dry sandstones (No.2) at high speed

    图  Hoerth实验[15] (上)和数值仿真(下)不同时刻喷溅对比图

    Figure  8.  Comparison of the evolution of ejection for experiment[15] (upper) and simulation (lower) at different times

    图  干燥岩石实验(上)与仿真(下)不同时刻喷溅对比图

    Figure  9.  Comparison of the evolution of ejection for experiment (upper) and simulation (lower) at different times

    图  10  Hoerth实验[15] (a、b)和数值仿真(c、d)及干燥(a、c)和含水(b、d)岩石不同情况下的喷溅对比图

    Figure  10.  Comparison of the evolution of ejection for dry (a), (c) and wet (b), (d) sandstone at different times

    图  11  干燥岩石(a)和含水岩石(b)开坑对比

    Figure  11.  Comparison of cratering for dry (a) and wet (b) sandstones

    表  1  岩石高速冲击开坑实验条件

    Table  1.   Sandstone sample data and experimental scheme

    No. Type Water saturation/(%) m1/(kg) m2/(g) d0/(mm)
    1 Wet 45 63.15 2.08 8
    2 Dry 62.05 2.09 8
    3 Dry 61.70 2.09 8
    下载: 导出CSV

    表  2  高速开坑实验结果

    Table  2.   Impact cratering test results

    No. Type Water saturation/(%) V/(m/s) d/(mm) D/(mm) d/D
    1 Wet 45 2 727 25.34 105.60 0.24
    2 Dry 2 260 23.72 121.08 0.19
    3 Dry 2 652 27.86 112.78 0.25
    下载: 导出CSV

    表  3  数值模拟方案参数

    Table  3.   Data of numerical simulation

    No. Type Porosity/(%) Water saturation/(%) d0/(mm) V/(km/s)
    1 Dry 20 12 4.6
    2 Wet 20 50 12 4.6
    3 Dry 20 8 2.6
    4 Wet 20 50 8 2.6
    下载: 导出CSV

    表  4  开坑数值计算材料参数[14]

    Table  4.   Material parameters for numerical simulation[14]

    Material Porosity/(%) ρ/(g/cm3) s c/(km/s) γ
    Steel 7.75 1.49 4.57 2.17
    Dry sandstone 20 2.24 1.51 2.06 0.9
    Wet sandstone 20 2.40 1.68 2.26 0.9
    下载: 导出CSV

    表  5  成坑参数的数值模拟结果

    Table  5.   Result of numerical simulation

    No. Type Water saturation/(%) d0/(mm) V/(km/s) d*/(mm) d/(mm) D*/(mm) D/(mm)
    1 Dry 12 4.6 68.0 77.5 366 324
    2 Wet 50 12 4.6 59.6 71.8 338 301
    3 Dry 8 2.6 28.8 37.7 123 112
    4 Wet 50 8 2.6 25.3 34.5 106 98
    下载: 导出CSV
  • [1] 游振东, 刘嵘.陨石撞击构造作用的研究现状与前景[J].地质力学学报, 2008, 14(1):22-36. doi: 10.3969/j.issn.1006-6616.2008.01.002

    YOU Z D, LIU R.Research on impact tectonics and impactites:status and prospects[J].Journal of Geomechanics, 2008, 14(1):22-36. doi: 10.3969/j.issn.1006-6616.2008.01.002
    [2] KENKMANN T, DEUTSCH A, THOMA K, et al.The MEMIN research unit:experimental impact cratering[J].Meteorit Planet Sci, 2013, 48(1):1-2. doi: 10.1111/maps.12035/full
    [3] KENKMANN T, KOWITZ A, WVNNEMANN K, et al.Experimental impact cratering in sandstone: the effect of pore fluids[C]//11th Hypervelocity Impact Symposium.Freiburg, Germany, 2010.
    [4] BALDWIN E C, MILNER D J, BURCHELL M J, et al.Laboratory impacts into dry and wet sandstone with and without an overlying water layer:implications for scaling laws and projectile survivability[J].Meteorit Planet Sci, 2007, 42(11):1905-1914. doi: 10.1111/maps.2007.42.issue-11
    [5] POELCHAU M H, KENKMANN T, THOMA K, et al.The MEMIN research unit:Scaling impact cratering experiments in porous sandstones[J].Meteorit Planet Sci, 2013, 48(1):8-22. doi: 10.1111/maps.2013.48.issue-1
    [6] BUHL E, POELCHAU M H, DRESEN G, et al.Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program[J].Meteorit Planet Sci, 2013, 48(1):71-86. doi: 10.1111/maps.2013.48.issue-1
    [7] BUHL E, KOWITZ A, ELBESHAUSEN D, et al.Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments[J].J Struct Geol, 2013, 56(7):20-33. http://www.sciencedirect.com/science/article/pii/S0191814113001491
    [8] SOMMER F, REISER F, DUFRESNE A, et al.Ejection behavior characteristics in experimental cratering in sandstone targets[J].Meteorit Planet Sci, 2013, 48(1):33-49. doi: 10.1111/maps.12017/full
    [9] GVLDEMEISTER N, WVNNEMANN K, DURR N, et al.Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling[J].Meteorit Planet Sci, 2013, 48(1):115-133. doi: 10.1111/maps.2013.48.issue-1
    [10] DURR N, SAUER M, GVLDEMEISTER N, et al.Mesoscale investigation of shock wave effects in dry and water-šaturated sandstone[J].Procedia Engineering, 2013, 58:289-298. doi: 10.1016/j.proeng.2013.05.033
    [11] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.The Hague, Netherlands: International Ballistics Committee, 1983, 21: 541-547.
    [12] WANG W, LÜ J, WANG H C.A creep-damage constitutive model for sandstone[J].Appl Mech Mater, 2012, 170-173:289-294. doi: 10.4028/www.scientific.net/AMM.170-173
    [13] BORG J P, COGAR J R, LLOYD A, et al.Computational simulations of the dynamic compaction of porous media[J].Int J Impact Eng, 2006, 33(1):109-118. http://www.sciencedirect.com/science/article/pii/S0734743X06001709
    [14] WU Y, ZHANG X F, WANG S, et al.Propagation of shock waves in dry and wet sandstone: theoretical analysis and meso-scale modeling[C]//2016 International Forum on Specialized Equipment and Engineering Mechanics.Nanjing, China, 2016.
    [15] HOERTH T, SCHAEFER F, THOMA K, et al.Hypervelocity impacts on dry and wet sandstone:observations of ejecta dynamics and crater growth[J].Meteorit Planet Sci, 2013, 48(1):23-32. doi: 10.1111/maps.12044/full
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  7350
  • HTML全文浏览量:  3238
  • PDF下载量:  95
出版历程
  • 收稿日期:  2017-01-15
  • 修回日期:  2017-03-25

目录

    /

    返回文章
    返回