高温高压实验中金属添加物对实验反应速率的影响:以柯石英-刚玉-蓝晶石体系中添加铂金粉末为例

吕明达 刘曦 熊志华 王霏

吕明达, 刘曦, 熊志华, 王霏. 高温高压实验中金属添加物对实验反应速率的影响:以柯石英-刚玉-蓝晶石体系中添加铂金粉末为例[J]. 高压物理学报, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003
引用本文: 吕明达, 刘曦, 熊志华, 王霏. 高温高压实验中金属添加物对实验反应速率的影响:以柯石英-刚玉-蓝晶石体系中添加铂金粉末为例[J]. 高压物理学报, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003
LÜ Ming-Da, LIU Xi, XIONG Zhi-Hua, WANG Fei. Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003
Citation: LÜ Ming-Da, LIU Xi, XIONG Zhi-Hua, WANG Fei. Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 99-108. doi: 10.11858/gywlxb.2015.02.003

高温高压实验中金属添加物对实验反应速率的影响:以柯石英-刚玉-蓝晶石体系中添加铂金粉末为例

doi: 10.11858/gywlxb.2015.02.003
基金项目: 国家自然科学基金(41273072)
详细信息
    作者简介:

    吕明达(1989—), 男,硕士研究生,主要从事实验地球化学研究.E-mail:Lv.MD@pku.edu.cn

    通讯作者:

    刘曦(1971-), 男, 研究员, 主要从事实验地球化学研究.E-mail:Xi.Liu@pku.edu.cn

  • 中图分类号: O521.2

Influence of Metal Additives on the Reaction Rate of High-Pressure and High-Temperature Experiments:Add Platinum Powder into the Coesite-Corundum-Kyanite System

  • 摘要: 在金刚石压腔和大腔体压机等高压设备上进行高温高压实验时,出于压力测量、激光加温、降低矿物生长速率等目的,通常在所研究的体系中添加Pt、Au、Fe等金属。添加这些金属所必需满足的一个前提条件是,它们不与研究体系发生化学反应,这一点往往受到研究者的重视;然而,这些金属添加物是否会影响化学反应速率却往往被忽视。以刚玉(Al2O3)和柯石英(SiO2)在高温高压条件下合成蓝晶石(Al2SiO5)的反应为研究对象,通过在实验中添加不同含量的Pt粉末,研究添加Pt粉末对该反应的影响。结果表明:Pt粉末的加入会促进合成反应的进行,而且Pt粉末含量越多,其促进作用越明显。研究结果可为解读相关高温高压实验结果提供重要依据。

     

  • 图  实验组装示意图

    Figure  1.  Experimental assembly

    图  实验产物的SEM((a)、(b)、(c))及光学((d)、(e)、(f))显微镜照片

    Figure  2.  SEM images and optical microscope photos of experimental products

    图  LMD526样品中柯石英、蓝晶石和刚玉3种物相的Raman光谱分析结果

    Figure  3.  Raman spectra of coesite, kyanite and corundum in LMD526

    图  实验产物的XRD图谱(■表示物相定量时所选取的3个峰)

    Figure  4.  XRD patterns of experimental products (Peaks marked by ■ were chosen to quantify the phase proportion)

    图  实验产物中蓝晶石含量与起始物质中Pt含量的关系

    Figure  5.  Kyanite in experimental products (mass fraction) versus Pt in starting materials

    表  1  高压实验中初始物质的成分(质量分数)

    Table  1.   Compositions of the starting materials used in experiments (Mass fraction)

    Exp.No. wAl2O3/(%) wSiO2/(%) wPt/(%)
    LMD525 62.96 37.04 -
    LMD526 55.99 32.90 11.10
    LMD527 47.25 27.83 24.92
    下载: 导出CSV

    表  2  高压实验产物的XRD物相鉴定及定量结果

    Table  2.   Results of phase identification and phase proportion in the high-pressure experimental products

    Exp.No. Phase File ID 2θ/(°) D/(nm) I/(%) (h k l) RIR Area (Error) w/(%)
    LMD525 Ky PDF#87-1708 27.944 0.319 03 100 (0 2 1) 0.36 26 830(1 799) 74.57(5)
    Coe PDF#77-1726 28.809 0.30964 100 (0 4 0) 0.83 13 482(831) 16.22(1)
    Cor PDF#83-2080 35.118 0.255 32 100 (2 1 1) 1.00 9 217(553) 9.21(1)
    LMD526 Ky PDF#87-1708 27.926 0.319 23 100 (0 2 1) 0.36 28 224(1 948) 86.99(6)
    Coe PDF#77-1726 28.792 0.309 82 100 (0 4 0) 0.83 6 004(360) 8.01(1)
    Cor PDF#83-2080 35.101 0.255 44 100 (2 1 1) 1.00 4 510(271) 5.00(1)
    LMD527 Ky PDF#87-1708 27.993 0.318 47 100 (0 2 1) 0.36 28 337(2 157) 92.11(7)
    Coe PDF#77-1726 28.811 0.309 62 100 (0 4 0) 0.83 3 320(200) 4.67(1)
    Cor PDF#83-2080 35.182 0.254 88 100 (2 1 1) 1.00 2 760(167) 3.22(1)
    Note:RIR refers to the area ratio of the strongest peak of phase A to the strongest peak of Cor, determined in a mixture of 50% phase A+50% Cor (mass fraction).
    下载: 导出CSV
  • [1] Akahama Y, Kawamura H. Diamond anvil Raman gauge in multimegabar pressure range[J]. High Press Res, 2007, 27(4): 473-482. doi: 10.1080/08957950701659544
    [2] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J/OL]. Nat Commun, 2012, 3: 1163. http://www.nature.com/ncomms/journal/v3/n10/pdf/ncomms2160.pdf.
    [3] Mao H K, Wu Y, Chen L C, et al. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa-implications for composition of the core[J]. J Geophys Res, 1990, 95(B13): 21737-21742. doi: 10.1029/JB095iB13p21737
    [4] Boehler R, Vonbargen N, Chopelas A. Melting, thermal-expansion, and phase-transitions of iron at high-pressures[EB/J]. J Geophys Res, 1990, 95(B13): 21731-21736.
    [5] Ming L, Bassett W A. Laser-heating in diamond anvil press up to 2 000 ℃ sustained and 3 000 ℃ pulsed at pressures up to 260 kilobars[J]. Rev Sci Instrum, 1974, 45(9): 1115-1118. doi: 10.1063/1.1686822
    [6] Shen G Y, Rivers M L, Wang Y B, et al. Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature[J]. Rev Sci Instrum, 2001, 72(2): 1273-1282. doi: 10.1063/1.1343867
    [7] Mezouar M. Synchrotron high-pressure high-temperature techniques[M]//High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer, 2010: 23-33.
    [8] Wang Y. Large volume presses for high-pressure studies using synchrotron radiation[M]//High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer, 2010: 81-96.
    [9] He Q, Liu X, Li B, et al. Expansivity and compressibility of strontium fluorapatite and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: Significance of the M-site cations[J]. Phys Chem Miner, 2013, 40(4): 349-360. doi: 10.1007/s00269-013-0576-6
    [10] Chang L, Chen Z, Liu X, et al. Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication[J]. Phys Chem Miner, 2013, 40(1): 29-40. doi: 10.1007/s00269-012-0543-7
    [11] Wang S, Liu X, Fei Y, et al. In situ high-temperature powder X-ray diffraction study on the spinel solid solutions(Mg1-xMnx)Cr2O4[J]. Phys Chem Miner, 2012, 39(3): 189-198. doi: 10.1007/s00269-011-0474-8
    [12] He Q, Liu X, Hu X, et al. Solid solutions between lead fluorapatite and lead fluorvanadate apatite: Compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction[J]. Phys Chem Miner, 2012, 39(3): 219-226. doi: 10.1007/s00269-011-0477-5
    [13] Shen G, Wang Y. High-pressure apparatus integrated with synchrotron radiation[J]. Rev Mineral Geochem, 2014, 78(1): 745-777. doi: 10.2138/rmg.2014.78.18
    [14] Funamori N, Jeanloz R. High-pressure transformation of Al2O3[J]. Science, 1997, 278(5340): 1109-1111. doi: 10.1126/science.278.5340.1109
    [15] Kurashina T, Hirose K, Ono S, et al. Phase transition in Al-bearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle[J]. Phys Earth Planet Inter, 2004, 145(1/4): 67-74.
    [16] Ono S, Hirose K, Murakami M, et al. Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations[J]. Earth Planet Sci Lett, 2002, 197(3/4): 187-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ccd4afcf738d17d6027cabf11d7227f0
    [17] Tutti F. Formation of end-member NaAlSi3O8 hollandite-type structure(lingunite)in diamond anvil cell[J]. Phys Earth Planet Inter, 2007, 161(3/4): 143-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=375c25292602bd04cc2c1460cd7f6b6d
    [18] Tutti F, Dubrovinsky L S, Saxena S K, et al. Stability of KAlSi3O8 hollandite-type structure in the Earth's lower mantle conditions[J]. Geophys Res Lett, 2001, 28(14): 2735-2738. doi: 10.1029/2000GL012786
    [19] Ono S, Nakajima Y, Funakoshi K. In situ observation of the decomposition of kyanite at high pressures and high temperatures[J]. Am Miner, 2007, 92(10): 1624-1629. doi: 10.2138/am.2007.2492
    [20] Levenson Y, Emmanuel S. Pore-scale heterogeneous reaction rates on a dissolving limestone surface[J]. Geochim Cosmochim Acta, 2013, 119: 188-197. doi: 10.1016/j.gca.2013.05.024
    [21] Terada Y, Ohkubo K, Mohri T, et al. Thermal conductivity in Pt-based alloys[J]. J Alloys Compound, 1999, 285(1/2): 233-237. http://www.sciencedirect.com/science/article/pii/S0925838898010421
    [22] Manga M, Jeanloz R. Thermal conductivity of corundum and periclase and implications for the lower mantle[J]. J Geophys Res, 1997, 102(B2): 2999-3008. doi: 10.1029/96JB02696
    [23] Horai K, Susaki J. The effect of pressure on the thermal-conductivity of silicate rocks up to 12 kbar[J]. Phys Earth Planet Inter, 1989, 55(3/4): 292-305. http://www.sciencedirect.com/science/article/pii/0031920189900770
    [24] Correa A, Nolan S P, Cavallo L. N-heterocyclic carbene complexes of Au, Pd, and Pt as effective catalysts in organic synthesis[J]. Top Curr Chem, 2011, 302: 131-155. doi: 10.1007/128_2010_118
    [25] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl Catalys B-Environm, 2005, 56(1/2): 9-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=089f3d5590acf0c14f937063006e430e
    [26] Miyake M, Miyabayashi K. Development of facile preparation methods for precisely structure-controlled Pt nanocrystals and their application as olefin hydrogenation model catalysts[J]. J Japan Petrol Instit, 2013, 56(4): 214-220. doi: 10.1627/jpi.56.214
    [27] Liu X, Ohfuji H, Nishiyama N, et al. High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications[J]. J Geophys Res, 2012, 117: B09205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12f3d48466f8ed301a032427e9f0a3fc
    [28] Liu X, Shieh S R, Fleet M E, et al. Compressibility of a natural kyanite to 17.5 GPa[J]. Prog Nat Sci, 2009, 19(10): 1281-1286. doi: 10.1016/j.pnsc.2009.04.001
    [29] Liu X, Nishiyama N, Sanehira T, et al. Decomposition of kyanite and solubility of Al2O3 in stishovite at high pressure and high temperature conditions[J]. Phys Chem Miner, 2006, 33(10): 711-721. doi: 10.1007/s00269-006-0122-x
    [30] Mikowski A, Soares P, Wypych F, et al. Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique[J]. Am Miner, 2008, 93(5/6): 844-852. http://www.degruyter.com/view/j/ammin.2008.93.issue-5-6/am.2008.2694/am.2008.2694.xml?format=INT
    [31] Bucher K, de Capitani C, Grapes R. The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramific rock, Kvesjoen, Norwegian Caledonides[J]. Canad Miner, 2005, 43(1): 129-156. doi: 10.2113/gscanmin.43.1.129
    [32] Cernok A, Ballaran T B, Caracas R, et al. Pressure-induced phase transitions in coesite[J]. Am Miner, 2014, 99(4): 755-763. doi: 10.2138/am.2014.4585
    [33] Perrillat J P, Daniel I, Lardeaux J M, et al. Kinetics of the coesite-quartz transition: Application to the exhumation of ultrahigh-pressure rocks[J]. J Petrol, 2003, 44(4): 773-788. doi: 10.1093/petrology/44.4.773
    [34] Harlov D E, Newton R C. Reversal of the metastable kyanite plus corundum plus quartz and andalusite plus corundum plus quartz equilibria and the enthalpy of formation of kyanite and andalusite[J]. Am Miner, 1993, 78(5/6): 594-600. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9308165035&site=ehost-live
    [35] Laidler K J. The development of the Arrhenius equation[J]. J Chem Edu, 1984, 61(6): 494-498. doi: 10.1021/ed061p494
    [36] 何强, 唐俊杰, 王霏, 等.一种适用于极端高温条件的六面顶压机实验组装[J].高压物理学报, 2014, 28(2): 145-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201402003

    He Q, Tang J J, Wang F, et al. High temperature stable assembly designed for cubic press[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 145-151. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201402003
    [37] Hirao N, Ohtani E, Kondo T, et al. Hollandite II phase in KAlSi3O8 as a potential host mineral of potassium in the Earth's lower mantle[J]. Phys Earth Planet Inter, 2008, 166(1/2): 97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57b093412230c8fcd34a8da6b5d70a21
    [38] Nishiyama N, Rapp R P, Irifune T, et al. Stability and p-V-T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material[J]. Phys Chem Miner, 2005, 32(8/9): 627-637. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70d6f49d1be2acac79bf9ba8bad5ceb5
    [39] Takafuji N, Yagi T, Miyajima N, et al. Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature[J]. Phys Chem Miner, 2002, 29(8): 532-537. doi: 10.1007/s00269-002-0271-5
    [40] Gréaux S, Nishiyama N, Kono Y, et al. Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth's mantle transition zone[J]. Phys Earth Planet Inter, 2011, 185(3/4): 89-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=354d64e2180a67eb5cc1c5c10caefbf2
    [41] Sueda Y, Irifune T, Yamada A, et al. The phase boundary between CaSiO3 perovskite and Ca2SiO4+CaSi2O5 determined by in situ X-ray observations[J]. Geophys Res Lett, 2006, 33(10): L10307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6000ffcc8d53a2078598b232aa5ba284
    [42] Irifune T, Nishiyama N, Kuroda K, et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction[J]. Science, 1998, 279(5357): 1698-1700. doi: 10.1126/science.279.5357.1698
    [43] Liu L. High-pressure phase transformations of albite, jadeite and nepheline[J]. Earth Planet Sci Lett, 1978, 37(3): 438-444. doi: 10.1016/0012-821X(78)90059-6
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  6727
  • HTML全文浏览量:  2170
  • PDF下载量:  260
出版历程
  • 收稿日期:  2014-10-06
  • 修回日期:  2014-12-25

目录

    /

    返回文章
    返回