一维应变层裂过程中孔洞聚集行为研究

钟政 蒋招绣 王永刚

钟政, 蒋招绣, 王永刚. 一维应变层裂过程中孔洞聚集行为研究[J]. 高压物理学报, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655
引用本文: 钟政, 蒋招绣, 王永刚. 一维应变层裂过程中孔洞聚集行为研究[J]. 高压物理学报, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655
ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Coalescence Behavior of Voids during One-Dimensional Strain Spallation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655
Citation: ZHONG Zheng, JIANG Zhaoxiu, WANG Yonggang. Coalescence Behavior of Voids during One-Dimensional Strain Spallation[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024201. doi: 10.11858/gywlxb.20220655

一维应变层裂过程中孔洞聚集行为研究

doi: 10.11858/gywlxb.20220655
基金项目: 国家自然科学基金(11972202)
详细信息
    作者简介:

    钟 政(1997−),男,硕士研究生,主要从事金属层裂损伤演化研究. E-mail:zhongzhengdd@163.com

    通讯作者:

    王永刚(1976−),男,博士,教授,主要从事冲击动力学研究. E-mail:wangyonggang@nbu.edu.cn

  • 中图分类号: O346.1

Coalescence Behavior of Voids during One-Dimensional Strain Spallation

  • 摘要: 延性金属的层裂行为包含孔洞成核、长大和聚集过程,其中孔洞聚集难以通过实验方法直接观测。采用有限元分析方法,研究了延性金属层裂过程中孔洞之间的聚集行为和竞争机制,讨论了孔洞间初始韧带距离、孔洞直径和孔洞位置分布对孔洞聚集的影响。通过实时统计孔洞长大过程中直径的变化,定量分析孔洞聚集的起始时刻。计算结果显示:当初始韧带距离由20 μm增加至50 μm时,相同孔径孔洞间聚集的起始时间不断延长,聚集时的直径增长加速度由1.717 Gm/s2降至0.602 Gm/s2;具有不同孔径比的孔洞之间发生聚集时,小孔优先向大孔靠拢;45°分布方式的孔洞在长大阶段的直径增长加速度最大,约为3.179 Gm/s2,且最早发生聚集。计算结果显示,在三孔聚集中,初始韧带距离和孔径相同的孔洞之间几乎同时发生聚集并贯通,且孔洞间聚集的起始时间随着初始韧带距离的增加而延长,大孔向附近小孔聚集的起始时刻较迟。计算结果揭示了层裂实验中难以观察到的孔洞长大和聚集的细观物理过程,对了解材料层裂的物理过程和本质具有重要的参考价值。

     

  • 图  软回收靶板中孔洞的光学照片:(a) 相同孔洞,(b) 不同孔洞,(c) 3个孔洞,(d) 不同位置孔洞

    Figure  1.  Optical photo of voids in soft recycling target: (a) same voids, (b) different voids, (c) three voids, (d) voids in different position

    图  高纯铜层裂的几何模型

    Figure  2.  Geometric model of high-purity copper spallation

    图 A和点B的位移时程曲线以及孔洞直径增长速率时程曲线

    Figure  3.  Time history curves of displacement of points A and B and void diameter growth rate

    图  不同时刻下dIL0=20 μm的孔洞聚集演化云图

    Figure  4.  Evolution distribution of voids coalescence in dIL0=20 μm at different time

    图  不同dIL0下孔洞直径增长速率时程曲线以及归一化聚集时间曲线

    Figure  5.  Time history curve of void diameter growth rate with different dIL0 and curve of normalized coalescence time

    图  实时韧带距离演化时程曲线

    Figure  6.  Time history curves of evolution of ILD

    图  不同位置分布的孔洞直径增长速率时程曲线

    Figure  7.  Time history curves of voids diameter growth rate with different arrangement

    图  不同时刻下不同位置分布的孔洞聚集演化云图

    Figure  8.  Evolution distribution of voids coalescence in different arrangement at different time

    图  不同孔洞的直径增长速率时程曲线及孔洞横纵比曲线

    Figure  9.  Time history curves of different voids diameter growth rate and curves of voids horizontal to vertical ratio

    图  10  不同时刻不同孔径比的孔洞聚集演化云图

    Figure  10.  Evolution distribution of voids coalescence in different aperture ratios at different time

    图  11  不同ILD下各孔洞直径增长速率时程曲线

    Figure  11.  Time history curves of void diameter growth rate with different ILD

    图  12  不同时刻不同初始韧带距离下三孔聚集演化云图

    Figure  12.  Evolution distribution of three voids coalescence in different ILD at different time

    图  13  不同d3下孔洞直径增长速率时程曲线

    Figure  13.  Time history curves of void diameter growth rate with different d3

    图  14  不同时刻不同d3条件下三孔聚集演化云图

    Figure  14.  Evolution distribution of three voids coalescence with different d3 at different time

    表  1  高纯铜的Johnson-Cook本构、损伤及状态方程参数[20-21]

    Table  1.   Johnson-Cook constitutive, damage and equation of state parameters of high-purity copper[20-21]

    ρ/(kg·m-3)A/MPaB/MPaCmn${\dot \varepsilon}_0$/s–1Troom/KTmelt/K
    8910902920.0251.090.3113001356
    C0/(m·s-1)sΓ0G/GPad1d2d3d4d5
    39101.51246.60.544.893.030.0141.12
    下载: 导出CSV
  • [1] ANTOUN T, CURRAN D R, SEAMAN L, et al. Spall fracture [M]. Berlin: Springer, 2003.
    [2] MALLICK D D, PARKER J, WILKERSON J W, et al. Estimating void nucleation statistics in laser-driven spall [J]. Journal of Dynamic Behavior of Materials, 2020, 6(3): 268–277. doi: 10.1007/s40870-020-00248-6
    [3] JONES D R, FENSIN S J, MARTINEZ D T, et al. Effect of peak stress and tensile strain-rate on spall in tantalum [J]. Journal of Applied Physics, 2018, 124(8): 085901. doi: 10.1063/1.5045045
    [4] XIE P C, WANG Y G, SHI T Y, et al. Damage evolution and spall failure in copper under complex shockwave loading conditions [J]. Journal of Applied Physics, 2020, 128(5): 055111. doi: 10.1063/5.0009521
    [5] 陈伟, 谢普初, 刘东升, 等. 晶粒尺寸对高纯铝板材层裂特性的影响 [J]. 爆炸与冲击, 2021, 41(4): 043102.

    CHEN W, XIE P C, LIU D S, et al. Effect of grain size on the spall behaviors of high-purity aluminum plates [J]. Explosion and Shock Waves, 2021, 41(4): 043102.
    [6] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253−388.
    [7] JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
    [8] 王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006: 39−47.

    WANG Y G. Study on dynamic tensile fracture and critical damage degree of ductile metals [D]. Mianyang: China Academy of Engineering Physics, 2006: 39−47.
    [9] ZUREY A K, THISSELL W R, JOHNSON J N, et al. Micromechanics of spall and damage in tantalum [J]. Journal of Materials Processing Technology, 1996, 60(1): 261−267.
    [10] TU R C, WEI N, PEI Y M, et al. The effect of compression on the void coalescence under strong dynamic loading [J]. Advances in Materials Science and Engineering, 2022: 1–11.
    [11] YANG X, ZENG X, WANG J, et al. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates [J]. Mechanics of Materials, 2019, 135(1): 98–113.
    [12] ZHAO L Y, LIU Y. Investigation on void growth and coalescence in single crystal copper under high-strain-rate tensile loading by atomistic simulation [J]. Mechanics of Materials, 2020, 151(1): 103615.
    [13] 王永刚, 徐东明. 高应变率下延性金属中微孔洞贯通行为的数值分析 [J]. 兵工学报, 2012, 33(9): 1095–1100.

    WANG Y G, XU D M. Simulation of void coalescence in ductile metals under high strain rate [J]. Acta Armamentarii, 2012, 33(9): 1095–1100.
    [14] HURE J. A coalescence criterion for porous single crystals [J]. Journal of the Mechanics and Physics of Solids, 2019, 124(1): 505–525.
    [15] HOLTE I, SRIVASTAVA A, MARTINEZ-PAEDA E, et al. Interaction of void spacing and material size effect on inter-void flow localization [J]. American Society of Mechanical Engineers Digital Collection, 2021, 88(2): 021010.
    [16] JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. doi: 10.1063/5.0082361
    [17] 陈伟. 晶粒尺寸对高纯铝动态力学行为与层裂特性的影响 [D]. 宁波: 宁波大学, 2020: 53−58.

    CHEN W. Effect of grain size on dynamic mechanical behavior and spallation characteristics of high-purity aluminum [D]. Ningbo: Ningbo University, 2020: 53−58.
    [18] 祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007: 44−46.

    QI M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2007: 44−46.
    [19] WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [20] 徐金中, 汤文辉. SPH方法在层裂损伤模拟中的应用 [J]. 强度与环境, 2009, 36(1): 1–7. doi: 10.3969/j.issn.1006-3919.2009.01.001

    XU J Z, TANG W H. Applications of SPH method to simulate spalling damage [J]. Structure & Environment Engineering, 2009, 36(1): 1–7. doi: 10.3969/j.issn.1006-3919.2009.01.001
    [21] 汤铁钢, 刘仓理. 高应变率拉伸加载下无氧铜的本构模型 [J]. 爆炸与冲击, 2013, 33(6): 581–586. doi: 10.3969/j.issn.1001-1455.2013.06.004

    TANG T G, LIU C L. On the constitutive model for oxygen-free high-conductivity copper under high strain-rate tension [J]. Explosion and Shock Waves, 2013, 33(6): 581–586. doi: 10.3969/j.issn.1001-1455.2013.06.004
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  90
  • PDF下载量:  44
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-10-20
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回