Turn off MathJax
Article Contents
ZHANG Shenghan, LI Ting, ZHANG Xiaojun, CHEN Zhiqiang. Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251174
Citation: ZHANG Shenghan, LI Ting, ZHANG Xiaojun, CHEN Zhiqiang. Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251174

Polyvinylidene Fluoride (PVDF) Phase Transitions under In-Situ High Pressure

doi: 10.11858/gywlxb.20251174
  • Received Date: 27 Aug 2025
  • Rev Recd Date: 23 Nov 2025
  • Accepted Date: 08 Jan 2026
  • Available Online: 26 Nov 2025
  • Polyvinylidene fluoride (PVDF) is a versatile semi-crystalline polymer exhibiting outstanding piezoelectric, pyroelectric and dielectric properties, and is therefore widely employed in sensors, energy devices and biomedical applications. Its performance is governed by crystallinity and the polymorphic constitutiona (α, β, γ, δ, ε), among which the polar β-phase possesses superior electromechanical characteristics compared with the non-polar α-phase. Nevertheless, the α-phase remains the most stable and the most readily obtained thermodynamical form. The structural evolution of PVDF under high pressure is investigated by means of in situ X-ray diffraction and Fourier-transform infrared spectroscopy. At ambient conditions the powder consists primarily of the α-phase with a minor fraction of β. Upon compression to 0–20 GPa, the α phase gradually diminishes; the emergence of new diffraction peaks and band shifts indicates sequential αβ and βγ transformations, accompanied by a pronounced increase in β content and concomitant formation of γ. When the pressure exceeds 20 GPa, severe lattice distortion destroys long-range crystalline order, resulting in peak broadening and eventual amorphization. The study unveils the intricate interplay between pressure-induced chain rearrangement and polymorphic transitions, clarifies the high-pressure phase-transformation pathway and structural evolution of PVDF, and thereby deepens the structure–property understanding of this polymer. The findings also provide a theoretical basis for tailoring its performance under extreme conditions and for designing high-pressure technologies.

     

  • loading
  • [1]
    DUAN B Y, WU K F, CHEN X Y, et al. Bioinspired PVDF piezoelectric generator for harvesting multi-frequency sound energy [J]. Advanced Electronic Materials, 2023, 9(8): 2300348. doi: 10.1002/aelm.202300348
    [2]
    FAN W, LEI R X, DOU H, et al. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor [J]. Nature Communications, 2024, 15(1): 3509. doi: 10.1038/S41467-024-47810-7
    [3]
    MU J L, XIAN S, YU J B, et al. Synergistic enhancement properties of a flexible integrated PAN/PVDF piezoelectric sensor for human posture recognition [J]. Nanomaterials, 2022, 12(7): 1155. doi: 10.3390/NANO12071155
    [4]
    ZOU X X, ZHU R J, CHEN X, et al. PVDF piezoelectric sensor based on solution blow spinning fibers for structural stress/strain health monitoring [J]. Smart Materials and Structures, 2024, 33(4): 045006. doi: 10.1088/1361-665X/ad2d6a
    [5]
    ZHOU H J, ZHANG Z J, SUN C X, et al. Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires [J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51506–51516. doi: 10.1021/acsami.0c15414
    [6]
    KUMAR A, KUMAR R, SATAPATHY D K. Bi2Se3-PVDF composite: a flexible thermoelectric system [J]. Physica B: Condensed Matter, 2020, 593: 412275. doi: 10.1016/j.physb.2020.412275
    [7]
    PAI Y H, XU C, ZHU R Y, et al. Piezoelectric-augmented thermoelectric ionogels for self-powered multimodal medical sensors [J]. Advanced Materials, 2025, 37(6): 2414663. doi: 10.1002/adma.202414663
    [8]
    FERREIRA A, COSTA C M, CORREA M A, et al. Thermoelectric study of Co2FeAl thin films grown onto flexible P(VDF-TrFE-CFE) terpolymer [J]. Journal of Alloys and Compounds, 2023, 956: 170333. doi: 10.1016/J.JALLCOM.2023.170333
    [9]
    TIWARI V, SRIVASTAVA G. Effect of thermal processing conditions on the structure and dielectric properties of PVDF films [J]. Journal of Polymer Research, 2014, 21(11): 587. doi: 10.1007/s10965-014-0587-0
    [10]
    WANG Z, XUE W Q, YANG Y Z, et al. PMMA brush-modified graphene for flexible energy storage PVDF dielectric films [J]. Composites Communications, 2023, 37: 101411. doi: 10.1016/j.coco.2022.101411
    [11]
    PADURARIU L, BRUNENGO E, CANU G, et al. Role of microstructures in the dielectric properties of PVDF-based nanocomposites containing high-permittivity fillers for energy storage [J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13535–13544. doi: 10.1021/acsami.2c23013
    [12]
    CHEN X L, SHI Y H, ZHANG K, et al. Synergistically depressed dielectric loss and elevated breakdown strength in core@double-shell structured Cu@CuO@MgO/PVDF nanocomposites [J]. Polymer, 2024, 307: 127321. doi: 10.1016/j.polymer.2024.127321
    [13]
    CHEN Y X, CAO L L, SU Y L, et al. Enhancement of dielectric properties in flexible Ti3C2Tx/PVDF composite films [J]. Ceramics International, 2024, 50(3): 4323–4331. doi: 10.1016/J.CERAMINT.2023.11.016
    [14]
    LOVINGER A J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase [J]. Macromolecules, 1982, 15(1): 40–44. doi: 10.1021/ma00229a008
    [15]
    陈雨晴, 周峻, 吴锴, 等. 聚偏二氟乙烯(PVDF)多晶型特征的研究进展 [J]. 绝缘材料, 2022, 55(4): 1–12. doi: 10.16790/j.cnki.1009-9239.im.2022.04.001

    CHEN Y Q, ZHOU J, WU K, et al. Research progress in polyvinylidene fluoride (PVDF) polycrystalline characteristics [J]. Insulating Materials, 2022, 55(4): 1–12. doi: 10.16790/j.cnki.1009-9239.im.2022.04.001
    [16]
    GREGORIO JR R, UENO E M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF) [J]. Journal of Materials Science, 1999, 34(18): 4489–4500. doi: 10.1023/A:1004689205706
    [17]
    WANG W J, FAN H Q, YE Y X. Effect of electric field on the structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory [J]. Polymer, 2010, 51(15): 3575–3581. doi: 10.1016/j.polymer.2010.05.021
    [18]
    LI L, ZHANG M Q, RONG M Z, et al. Studies on the transformation process of PVDF from α to β phase by stretching [J]. RSC Advances, 2014, 4(8): 3938–3943. doi: 10.1039/C3RA45134H
    [19]
    MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
    [20]
    CHAUHAN A, CHAUHAN P. Powder XRD technique and its applications in science and technology [J]. Journal of Analytical & Bioanalytical Techniques, 2014, 5(5): 212. doi: 10.4172/2155-9872.1000212
    [21]
    CAI X M, LEI T P, SUN D H, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382–15389. doi: 10.1039/c7ra01267e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(329) PDF downloads(12) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return