Volume 39 Issue 11
Nov 2025
Turn off MathJax
Article Contents
JING Linshuo, SHAO Jianli, XUE Fengning, WANG Pei, XU Lichun. Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141
Citation: JING Linshuo, SHAO Jianli, XUE Fengning, WANG Pei, XU Lichun. Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110106. doi: 10.11858/gywlxb.20251141

Machine Learning Potential Construction and Compressive Mechanical Properties of Al-Cu Intermetallic Compounds

doi: 10.11858/gywlxb.20251141
  • Received Date: 22 Jul 2025
  • Rev Recd Date: 01 Sep 2025
  • Available Online: 17 Sep 2025
  • Issue Publish Date: 05 Nov 2025
  • The optimization design of Al-Cu intermetallic compounds is crucial for the mechanical properties of Al-Cu alloys. Molecular dynamics (MD) simulation can provide microscopic processes of the mechanical behavior of Al-Cu alloys, and the interatomic potential is the key physical basis to ensure the reliability of the MD simulation. This work constructed a depth potential (DP) function for the Al-Cu system based on first-principles calculations, and compared the physical properties predicted by DP (crystal structure, energy-volume curve, pressure-volume curve, and phonon spectrum) with density functional theory (DFT) and embedded atom method (EAM) results. The generalization ability and accuracy of the DP model were verified. Based on the DP potential, MD simulations were conducted on the compression process of five Al-Cu intermetallic compounds (θ-Al2Cu, θ′-Al2Cu, Al3Cu, Al4Cu9, and AlCu4 phases). The characteristics and laws of yielding phenomena in structures such as θ-Al2Cu, θ′-Al2Cu and AlCu4 were presented. The yield stress and shear stress of θ-Al2Cu, θ′-Al2Cu and AlCu4 increase with the increase of strain rate, and the yield strain also increases correspondingly. This phenomenon arises from the enhancement of phonon drag obstruction to atomic slip. Among them, θ-Al2Cu has the best compressive performance, yielding at a strain rate of 4×109 s−1 when compressed to 17.4%, with a yield strength of 51.15 GPa. Screw dislocations are produced, and the atoms slip along the [$ \overline{1} 11$], [111] and [$11 \overline{1} $] directions. θ′-Al2Cu yields when compressed to 10.0%, and the atoms slip in the plane perpendicular to the compression. Yielding occurs when the AlCu4 phase is compressed to 13.4% and the atoms slip along the [401] and [$40 \overline{1} $] directions.

     

  • loading
  • [1]
    DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design (1980–2015), 2014, 56: 862–871. doi: 10.1016/j.matdes.2013.12.002
    [2]
    ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials [J]. Progress in Aerospace Sciences, 2018, 97: 22–34. doi: 10.1016/j.paerosci.2018.01.001
    [3]
    LI S S, YUE X, LI Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. Journal of Materials Research and Technology, 2023, 27: 944–983. doi: 10.1016/j.jmrt.2023.09.274
    [4]
    DE SOUSA ARAUJO J V, MILAGRE M X, FERREIRA R O, et al. Microstructural characteristics of the al alloys: the dissimilarities among the 2XXX alloys series used in aircraft structures [J]. Metallography, Microstructure, and Analysis, 2020, 9(5): 744–758. doi: 10.1007/s13632-020-00688-5
    [5]
    HE S, CHEN S, ZHAO Y Q, et al. Study on the intelligent model database modeling the laser welding for aerospace aluminum alloy [J]. Journal of Manufacturing Processes, 2021, 63: 121–129. doi: 10.1016/j.jmapro.2020.04.043
    [6]
    SETTLES G S, KEANE B T, ANDERSON B W, et al. Shock waves in aviation security and safety [J]. Shock Waves, 2003, 12(4): 267–275. doi: 10.1007/s00193-002-0162-1
    [7]
    THORPE J. Fatalities and destroyed aircraft due to bird strikes, 1912–2002 [J]. Modern Language Journal, 2003, 9(6): 375–376. doi: 10.1530/endoabs.37.EP326
    [8]
    CORNMAN L B, MORSE C S, CUNNING G. Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements [J]. Journal of Aircraft, 2012, 32(1): 171–177. doi: 10.2514/3.46697
    [9]
    BRAMBERGER M, DÖRNBRACK A, WILMS H, et al. Vertically propagating mountain waves—a hazard for high-flying aircraft? [J]. Journal of Applied Meteorology and Climatology, 2018, 57(9): 1957–1975. doi: 10.1175/JAMC-D-17-0340.1
    [10]
    YANG P P, YUE W H, LI J, et al. Review of damage mechanism and protection of aero-engine blades based on impact properties [J]. Engineering Failure Analysis, 2022, 140: 106570. doi: 10.1016/j.engfailanal.2022.106570
    [11]
    SUN D Q, WANG Y X, ZHANG X Y, et al. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys [J]. Superlattices and Microstructures, 2016, 100: 112–119. doi: 10.1016/j.spmi.2016.09.012
    [12]
    WOLVERTON C. First-principles prediction of equilibrium precipitate shapes in Al-Cu alloys [J]. Philosophical Magazine Letters, 1999, 79(9): 683–690. doi: 10.1080/095008399176724
    [13]
    GUINIER A. Structure of age-hardened aluminium-copper alloys [J]. Nature, 1938, 142(3595): 569–570. doi: 10.1038/142569b0
    [14]
    NAYAK S K, HUNG C J, HEBERT R J, et al. Atomistic origins of Guinier-Preston zone formation and morphology in Al-Cu and Al-Ag alloys from first principles [J]. Scripta Materialia, 2019, 162: 235–240. doi: 10.1016/j.scriptamat.2018.11.031
    [15]
    ZHOU Q, WANG J, MISRA A, et al. Atomistic study of fundamental character and motion of dislocations in intermetallic Al2Cu [J]. International Journal of Plasticity, 2016, 87: 100–113. doi: 10.1016/j.ijplas.2016.09.005
    [16]
    WADA M, KITA H, MORI T. FIM observation of GP zones in an Al-4%Cu alloy [J]. Acta Metallurgica, 1985, 33(9): 1631–1636. doi: 10.1016/0001-6160(85)90158-0
    [17]
    WANG R H, WEN Y, CHEN B A. Sn microalloying Al-Cu alloys with enhanced fracture toughness [J]. Materials Science and Engineering: A, 2021, 814: 141243. doi: 10.1016/j.msea.2021.141243
    [18]
    GUO C C, ZHANG R Z, LI L, et al. Multiscale analysis of Al4Cu9 intermetallic compounds on shock Hugoniot of Al-Cu composites: experiments and simulations [J]. Composite Structures, 2025, 355: 118866. doi: 10.1016/j.compstruct.2025.118866
    [19]
    DOBROMYSLOV A V, TALUTS N I, KOZLOV E A, et al. Influence of spherical converging shock waves on the structure of Al-2.4% Mg-5.5% Zn alloy [J]. Journal de Physique Ⅳ, 2006, 134: 1003–1008. doi: 10.1051/jp4:2006134153
    [20]
    SINGH C V, WARNER D H. Mechanisms of Guinier-Preston zone hardening in the athermal limit [J]. Acta Materialia, 2010, 58(17): 5797–5805. doi: 10.1016/j.actamat.2010.06.055
    [21]
    KRASNIKOV V S, MAYER A E. Modeling of plastic localization in aluminum and Al-Cu alloys under shock loading [J]. Materials Science and Engineering: A, 2014, 619: 354–363. doi: 10.1016/j.msea.2014.09.105
    [22]
    YANILKIN A V, KRASNIKOV V S, KUKSIN A Y, et al. Dynamics and kinetics of dislocations in Al and Al-Cu alloy under dynamic loading [J]. International Journal of Plasticity, 2014, 55: 94–107. doi: 10.1016/j.ijplas.2013.09.008
    [23]
    POGORELKO V V, MAYER A E. Propagation of shock waves and fracture in the Al-Cu composite: numerical simulation [J]. Journal of Physics: Conference Series, 2015, 653: 012046. doi: 10.1088/1742-6596/653/1/012046
    [24]
    MOJUMDER S. Molecular dynamics study of plasticity in Al-Cu alloy nanopillar due to compressive loading [J]. Physica B: Condensed Matter, 2018, 530: 86–89. doi: 10.1016/j.physb.2017.10.119
    [25]
    TIAN X, CUI J Z, YANG M, et al. Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent {111} Cu-Al multilayers [J]. International Journal of Mechanical Sciences, 2020, 172: 105414. doi: 10.1016/j.ijmecsci.2019.105414
    [26]
    CAI J, YE Y Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys [J]. Physical Review B, 1996, 54(12): 8398–8410. doi: 10.1103/PhysRevB.54.8398
    [27]
    APOSTOL F, MISHIN Y. Interatomic potential for the Al-Cu system [J]. Physical Review B, 2011, 83(5): 054116. doi: 10.1103/PhysRevB.83.054116
    [28]
    JOHNSON R A. Alloy models with the embedded-atom method [J]. Physical Review B, 1989, 39(17): 12554–12559. doi: 10.1103/PhysRevB.39.12554
    [29]
    JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects [J]. Science, 2015, 349(6245): 255–260. doi: 10.1126/science.aaa8415
    [30]
    LEE K, YOO D, JEONG W, et al. SIMPLE-NN: an efficient package for training and executing neural-network interatomic potentials [J]. Computer Physics Communications, 2019, 242: 95–103. doi: 10.1016/j.cpc.2019.04.014
    [31]
    STANLEY K O, CLUNE J, LEHMAN J, et al. Designing neural networks through neuroevolution [J]. Nature Machine Intelligence, 2019, 1(1): 24–35. doi: 10.1038/s42256-018-0006-z
    [32]
    WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics [J]. Computer Physics Communications, 2018, 228: 178–184. doi: 10.1016/j.cpc.2018.03.016
    [33]
    ZHANG L F, WANG H, CAR R, et al. Phase diagram of a deep potential water model [J]. Physical Review Letters, 2021, 126(23): 236001. doi: 10.1103/PhysRevLett.126.236001
    [34]
    WANG F, SUN Y, CHENG J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes [J]. Journal of the American Chemical Society, 2023, 145(7): 4056–4064. doi: 10.1021/jacs.2c11793
    [35]
    JIANG W R, ZHANG Y Z, ZHANG L F, et al. Accurate deep potential model for the Al-Cu-Mg alloy in the full concentration space [J]. Chinese Physics B, 2021, 30(5): 050706. doi: 10.1088/1674-1056/abf134
    [36]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [37]
    KRESSE G, FURTHMÜLLER J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50. doi: 10.1016/0927-0256(96)00008-0
    [38]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1998, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [39]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [40]
    TOGO A, TANAKA I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1–5. doi: 10.1016/j.scriptamat.2015.07.021
    [41]
    ZHANG Y Z, WANG H D, CHEN W J, et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Computer Physics Communications, 2020, 253: 107206. doi: 10.1016/j.cpc.2020.107206
    [42]
    PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [43]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [44]
    STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021. doi: 10.1088/0965-0393/20/4/045021
    [45]
    STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [46]
    孙凤儿. 铝铜合金金属间化合物及界面性能的第一性原理研究 [D]. 太原: 中北大学, 2021: 34−38.

    SUN F E. First principles study on intermetallic compounds and interfacial properties of aluminum-copper alloys [D]. Taiyuan: North University of China, 2021: 34−38.
    [47]
    ZHOU W, LIU L J, LI B L, et al. Structural, elastic, and electronic properties of Al-Cu intermetallics from first-principles calculations [J]. Journal of Electronic Materials, 2009, 38(2): 356–364. doi: 10.1007/s11664-008-0587-0
    [48]
    YANG C D, LI W, ZHI W. Study on mechanical behavior and electronic structures of Al-Cu intermetallic compounds based on first-principles calculations [J]. Solid State Communications, 2011, 151(18): 1270–1274. doi: 10.1016/j.ssc.2011.05.040
    [49]
    CHEN H C, YANG L J, LONG J P. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds [J]. Superlattices and Microstructures, 2015, 79: 156–165. doi: 10.1016/j.spmi.2014.11.005
    [50]
    WANG C, CHEN J, LIANG S H, et al. First-principles calculations to investigate pressure effect on structural, elastic and thermodynamic properties of AlCu, Al2Cu and Al4Cu9 [J]. Vacuum, 2022, 203: 111279. doi: 10.1016/j.vacuum.2022.111279
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views(168) PDF downloads(16) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return