| Citation: | ZHAN Yan, XU Bingquan, PENG Jian, WANG Chuanbin. Accelerating Finite Element Analysis of Dynamic Impact Response of TiN/Ti Multilayer Coatings Based on Small Sample Machine Learning[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110108. doi: 10.11858/gywlxb.20251132 |
| [1] |
李德顺, 梁恩培, 李银然, 等. 风力机叶片涂层风沙冲蚀磨损特性的风洞试验研究 [J]. 太阳能学报, 2022, 43(6): 196–203. doi: 10.19912/j.0254-0096.tynxb.2020-1032
LI D S, LIANG E P, LI Y R, et al. Wind tunnel experimental study on erosion and wear characteristics of wind turbine blade coating [J]. Acta Energiae Solaris Sinica, 2022, 43(6): 196–203. doi: 10.19912/j.0254-0096.tynxb.2020-1032
|
| [2] |
张福生. 风沙环境下风力机叶片磨损特性分析与研究 [D]. 阜新: 辽宁工程技术大学, 2022.
ZHANG F S. Analysis and research on wear characteristics of wind turbine blade in wind-blown sand environment [D]. Fuxin: Liaoning Technical University, 2022.
|
| [3] |
王健, 杜国正, 张永, 等. 运行状态下风力机叶片涂层沙蚀磨损研究 [J]. 材料导报, 2021, 35(4): 177–180. doi: 10.11896/cldb.20060234
WANG J, DU G Z, ZHANG Y, et al. Research on sand erosion wear of wind turbine blade coating in operation state [J]. Materials Reports, 2021, 35(4): 177–180. doi: 10.11896/cldb.20060234
|
| [4] |
王成泽. 风沙环境下风力机叶片的冲蚀磨损特性研究 [D]. 兰州: 兰州理工大学, 2016.
WANG C Z. Research on erosion characteristics of wind turbine blades under sand-wind environment [D]. Lanzhou: Lanzhou University of Technology, 2016.
|
| [5] |
HE G Y, SUN D Y, CHEN J, et al. Key problems affecting the anti-erosion coating performance of aero-engine compressor: a review [J]. Coatings, 2019, 9(12): 821. doi: 10.3390/coatings9120821
|
| [6] |
PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid particle erosion testing of helicopter rotor blade materials [J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96–108. doi: 10.1007/s11668-011-9531-3
|
| [7] |
NASH D, LEISHMAN G, MACKIE C, et al. A staged approach to erosion analysis of wind turbine blade coatings [J]. Coatings, 2021, 11(6): 681. doi: 10.3390/coatings11060681
|
| [8] |
WANG D, LIN S S, DUAN D Y, et al. Thermal shock resistance of Cr/CrN/Cr/CrAlN multilayer anti-erosion coating [J]. Surface and Coatings Technology, 2023, 470: 129776. doi: 10.1016/j.surfcoat.2023.129776
|
| [9] |
LIU R, PAN Y, CHEN A H, et al. Study on the influence of surface roughness on the erosion characteristics of compressor blades [J]. Powder Technology, 2023, 430: 119037. doi: 10.1016/j.powtec.2023.119037
|
| [10] |
BONU V, JEEVITHA M, TIZZILE J S J, et al. Energy absorbing nano-porous Ti layers assisted erosion-corrosion resistant Ti/TiN multi-layered coatings for gas turbine compressor blades [J]. Surface and Coatings Technology, 2024, 479: 130526. doi: 10.1016/j.surfcoat.2024.130526
|
| [11] |
YUAN Z W, HAN Y T, ZANG S L, et al. Damage evolution behavior of TiN/Ti multilayer coatings under high-speed impact conditions [J]. Surface and Coatings Technology, 2021, 426: 127807. doi: 10.1016/j.surfcoat.2021.127807
|
| [12] |
RUAN H T, WANG Z Y, WANG L, et al. Designed Ti/TiN sub-layers suppressing the crack and erosion of TiAlN coatings [J]. Surface and Coatings Technology, 2022, 438: 128419. doi: 10.1016/j.surfcoat.2022.128419
|
| [13] |
COTO B, MENDIZABAL L, PAGANO F, et al. Role of surface finishing and interfacial lacquer layer on particle erosion mechanisms of Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection [J]. Materials Letters, 2021, 285: 129187. doi: 10.1016/j.matlet.2020.129187
|
| [14] |
ZHOU K, LIU D X, YANG Z Q, et al. Effect of TiN/Ti multilayer coatings with different microstructure on wear, corrosion, and fatigue performance of high strength steel [J]. Ceramics International, 2025, 51(18): 25990–26002. doi: 10.1016/j.ceramint.2025.03.282
|
| [15] |
KRELLA A K. Cavitation erosion resistance of Ti/TiN multilayer coatings [J]. Surface and Coatings Technology, 2013, 228: 115–123. doi: 10.1016/j.surfcoat.2013.04.016
|
| [16] |
CHEN J, HE G Y, HAN Y T, et al. Structural toughness and interfacial effects of multilayer TiN erosion-resistant coatings based on high strain rate repeated impact loads [J]. Ceramics International, 2021, 47(19): 27660–27667. doi: 10.1016/j.ceramint.2021.06.190
|
| [17] |
CAO X, HE W F, LIAO B, et al. Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy [J]. Surface and Coatings Technology, 2019, 365: 214–221. doi: 10.1016/j.surfcoat.2018.08.066
|
| [18] |
ZHANG Z L, YANG M L, HE G Y. Structure, mechanical, and sand erosion behavior of TiN/Ti coating deposited at various temperature [J]. Ceramics International, 2023, 49(11): 16786–16795. doi: 10.1016/j.ceramint.2023.02.039
|
| [19] |
LIU W, SHEN Q, YANG M, et al. High hardness and toughness potential TiN/TiSiN gradient nano-multilayer coating structure by finite element study [J]. Ceramics International, 2024, 50(6): 9034–9046. doi: 10.1016/j.ceramint.2023.12.217
|
| [20] |
SHARMA L K, SHARMA N K, RANA A S. Finite element simulations of thermal properties of multilayer coatings [C]//Proceedings of the 1st International Conference on Materials and Thermophysical Properties. Jaipur: Springer, 2025: 445−452.
|
| [21] |
ISLAM M J, BAKR M A, FARHAN M, et al. Impact response and optimization of reinforced concrete slabs under dynamic loading: a finite element analysis study [J]. International Journal of Non-Linear Mechanics, 2025, 178: 105200. doi: 10.1016/j.ijnonlinmec.2025.105200
|
| [22] |
AMMAR Y B, AOUADI K, BESNARD A, et al. Exploring the effect of layer thickness on the elastoplastic properties of the constituent materials of CrN/CrAlN multilayer coatings: a nanoindentation and finite element-based investigation [J]. Thin Solid Films, 2024, 808: 140581. doi: 10.1016/j.tsf.2024.140581
|
| [23] |
SOHAIL Y, ZHANG C L, XUE D Z, et al. Machine-learning design of ductile FeNiCoAlTa alloys with high strength [J]. Nature, 2025, 643(8070): 119–124. doi: 10.1038/s41586-025-09160-2
|
| [24] |
XU B Q, PAN Y W, PENG J, et al. Stacking machine learning models for predicting hardness and modulus in refractory metal high-entropy nitride coatings [J]. International Journal of Refractory Metals and Hard Materials, 2025, 132: 107243. doi: 10.1016/j.ijrmhm.2025.107243
|
| [25] |
WANG J J, XU B Q, LEE K, et al. Machine learning assisted CALPHAD framework for thermodynamic analysis of CVD SiOxNy thin films [J]. Calphad, 2025, 88: 102806. doi: 10.1016/j.calphad.2025.102806
|
| [26] |
BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559(7715): 547–555. doi: 10.1038/s41586-018-0337-2
|
| [27] |
PENG J, YAMAMOTO Y, HAWK J A, et al. Coupling physics in machine learning to predict properties of high-temperatures alloys [J]. NPJ Computational Materials, 2020, 6(1): 141. doi: 10.1038/s41524-020-00407-2
|
| [28] |
SONG B, ZHOU R, AHMED F. Multi-modal machine learning in engineering design: a review and future directions [J]. Journal of Computing Information Science in Engineering, 2024, 24(1): 010801. doi: 10.1115/1.4063954
|
| [29] |
POLLA A, FRULLA G, CESTINO E, et al. Coupled thermo-mechanical numerical modeling of CFRP panel under high-velocity impact [J]. Aerospace, 2023, 10(4): 367. doi: 10.3390/aerospace10040367
|
| [30] |
GREENHILL S, RANA S, GUPTA S, et al. Bayesian optimization for adaptive experimental design: a review [J]. IEEE Access, 2020, 8: 13937–13948. doi: 10.1109/ACCESS.2020.2966228
|
| [31] |
SETTLES B. Active learning literature survey [M]. San Rafael: Morgan & Claypool Publishers, 2012.
|
| [32] |
SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization [J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi: 10.1109/JPROC.2015.2494218
|
| [33] |
KERMOUCHE G, GRANGE F, LANGLADE C. Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing [J]. Materials Science and Engineering: A, 2013, 569: 71–77. doi: 10.1016/j.msea.2013.01.020
|
| [34] |
史文龙. TiN/Ti多层涂层多颗粒冲击损伤与承载响应模拟研究 [D]. 西安: 长安大学, 2024.
SHI W L. Simulation study on multi particle impact damage and load-bearing response of TiN/Ti multilayer coatings [D]. Xi’an: Chang’an University, 2024.
|
| [35] |
PEARSON K. Ⅶ. note on regression and inheritance in the case of two parents [J]. Proceedings of the Royal Society of London, 1895, 58(347/348/349/350/351/352): 240−242.
|
| [36] |
PEARSON K. Ⅲ. contributions to the mathematical theory of evolution [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Ohysical and Engineering Sciences, 1894, 185: 71–110. doi: 10.1098/rsta.1894.0003
|
| [37] |
TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
| [38] |
TIPPING M E. Sparse Bayesian learning and the relevance vector machine [J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
|
| [39] |
DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines [C]//Proceedings of the 10th International Conference on Neural Information Processing Systems. Denver: MIT Press, 1996: 155−161.
|
| [40] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 785−794.
|
| [41] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning [M]. Cambridge: The MIT Press, 2005.
|
| [42] |
BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
|
| [43] |
STONE M. Cross-validatory choice and assessment of statistical predictions [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 111–133. doi: 10.1111/j.2517-6161.1974.tb00994.x
|
| [44] |
RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead [J]. Nature Machine Intelligence, 2019, 1(5): 206–215. doi: 10.1038/s42256-019-0048-x
|
| [45] |
SHAPLEY L S. A value for n-person games [M]//KUHN H W, TUCKER A W. Contributions to the Theory of Games. Princeton: Princeton University Press, 1953.
|
| [46] |
BISWAS S, CENNA A, WILLIAMS K, et al. Subsurface behavior of ductile material by particle impacts and its influence on wear mechanism [J]. Procedia Engineering, 2014, 90: 160–165. doi: 10.1016/j.proeng.2014.11.830
|
| [47] |
DERINGER V L, BARTÓK A P, BERNSTEIN N, et al. Gaussian process regression for materials and molecules [J]. Chemical Reviews, 2021, 121(16): 10073–10141. doi: 10.1021/acs.chemrev.1c00022
|