Turn off MathJax
Article Contents
CUI He, FU Jianping, REN Kai, MIAO Chunzhuang, GAO Xiaotao, LI Taotao, FENG Xiongbo. Damage of a New Shaped Warhead to Water-Containing Composite Structure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251102
Citation: CUI He, FU Jianping, REN Kai, MIAO Chunzhuang, GAO Xiaotao, LI Taotao, FENG Xiongbo. Damage of a New Shaped Warhead to Water-Containing Composite Structure[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251102

Damage of a New Shaped Warhead to Water-Containing Composite Structure

doi: 10.11858/gywlxb.20251102
  • Received Date: 30 May 2025
  • Rev Recd Date: 02 Jul 2025
  • Accepted Date: 10 Dec 2025
  • Available Online: 05 Jul 2025
  • In order to improve the penetration capability of the shaped charge warhead to the water-containing composite structure, a truncated cone-sphere combined liner was designed, and its jet forming motion law in the water medium and the damage performance to the water-containing composite structure were explored by numerical simulation. It is found that in the process of penetrating the water-containing composite structure, the truncated cone-sphere combined liner has a larger jet length and a higher jet head velocity compared with the sub-hemisphere-sphere combined liner and the U-shaped-sphere combined liner. It also has the smallest cavity channel formed in the water medium and the radial expansion velocity of the water medium and the largest residual kinetic energy and jet velocity after the penetrated target plate. The influence of structural parameters such as cone angle α, height h, side wall thickness a1 and top wall thickness a2 on the jet shape and penetration performance of the truncated cone-spherical combined liner was investigated by simulation, and a orthogonal optimization test was designed. It is found that the influence of these structural parameters on the jet penetration performance decreases in the order of: the cone angle α, height h, side wall thickness a1, and top wall thickness a2. When α=26°, h=22 mm, a1=4.0 mm, and a2=3.2 mm, the penetration performance of the truncated cone-sphere combined liner is superior, and the residual kinetic energy of the jet in penetrating the aftereffect target is 136.2 kJ. This study provides a valuable reference for the design of shaped torpedo warhead and the improvement of torpedo warhead damage power.

     

  • loading
  • [1]
    汪玉, 华宏星. 舰船现代冲击理论及应用 [M]. 北京: 科学出版社, 2005: 7−9.

    WANG Y, HUA H X. Modern impact theory and application of ships [M]. Beijing: Science Press, 2005: 7−9.
    [2]
    郑宇. 双层药型罩毁伤元形成机理研究 [D]. 南京: 南京理工大学, 2008: 1−11.

    ZHENG Y. Study on the formation mechanism of kill element from shaped charge with double layer liners [D]. Nanjing: Nanjing University of Science and Technology, 2008: 1−11.
    [3]
    郭雁潮. 聚能装药对舰船典型靶板的毁伤特性研究 [D]. 太原: 中北大学, 2020: 2−4.

    GUO Y C. Research on the damage efficiency of shaped charge to warship typical target plates [D]. Taiyuan: North China University, 2020: 2−4.
    [4]
    TOSELLO R. Tandem shaped charges for underwater applications [C]//Proceedings of the 5th International Symposium on Ballistics. Jerusalem, Israel: Israel Institute of Technology/Faculty of Mechanical Engineering, 1995: 359−368.
    [5]
    PUGH E M, EICHELBERGER R J, ROSTOKER N. Theory of jet formation by charges with lined conical cavities [J]. Journal of Applied Physics, 1952, 23(5): 532–536. doi: 10.1063/1.1702246
    [6]
    JANZON S G, CHICK M, BUSSEL T J. Penetration and failure of explosive formed penetrators i-n water [C]//14th International Symposium on Ballistics. Quebec, Canada: Canadian Defence Preparedness Association, 1993: 611−617.
    [7]
    刘念念, 宋丹丹, 金辉, 等. 半球形聚能装药对复合靶板结构的毁伤数值仿真与试验研究 [J]. 振动与冲击, 2018, 37(4): 153–159. doi: 10.13465/j.cnki.jvs.2018.04.023

    LIU N N, SONG D D, JIN H, et al. Numerical simulation and experimental study on the damage characteristics of hemispherical shaped charge on composite armor [J]. Journal of Vibration and Shock, 2018, 37(4): 153–159. doi: 10.13465/j.cnki.jvs.2018.04.023
    [8]
    杨珊, 王树山, 王韫泽, 等. 成型装药水下大炸高对多层间隔靶的侵彻威力 [J]. 火炸药学报, 2022, 45(2): 243–248. doi: 10.14077/j.issn.1007-7812.202111001

    YANG S, WANG S S, WANG Y Z, et al. Penetration power of large underwater explosion height of shaped charge to multi-layer spacer target [J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 243–248. doi: 10.14077/j.issn.1007-7812.202111001
    [9]
    王海福, 江增荣, 李向荣. 药型罩参数对聚能装药水下作用效应的影响 [J]. 北京理工大学学报, 2006, 26(5): 405–409. doi: 10.3969/j.issn.1001-0645.2006.05.007

    WANG H F, JIANG Z R, LI X R. Influences of liner parameters on the effects of shaped charge operating underwater [J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 405–409. doi: 10.3969/j.issn.1001-0645.2006.05.007
    [10]
    赵鑫, 徐永杰, 董方栋, 等. 组合药型罩聚能装药对轻装甲侵彻仿真研究 [J]. 兵器装备工程学报, 2022, 43(10): 90–95. doi: 10.11809/bqzbgcxb2022.10.013

    ZHAO X, XU Y J, DONG F D, et al. Simulation study on penetration of light armor by compound liner shaped charge [J]. Journal of Ordnance Equipment Engineering, 2022, 43(10): 90–95. doi: 10.11809/bqzbgcxb2022.10.013
    [11]
    白晶, 张国伟, 李岩, 等. 圆柱-球缺组合型药型罩结构优化研究 [J]. 中北大学学报(自然科学版), 2023, 44(2): 122–127, 153.

    BAI J, ZHANG G W, LI Y, et al. Research on the structural optimization of cylindrical-spherical lacking composite liner [J]. Journal of North University of China (Natural Science Edition), 2023, 44(2): 122–127, 153.
    [12]
    赵海平, 刘天生, 石军磊, 等. 双锥结合罩射流特性影响因素的模拟研究 [J]. 火工品, 2018(2): 35–39. doi: 10.3969/j.issn.1003-1480.2018.02.010

    ZHAO H P, LIU T S, SHI J L, et al. Numerical simulation of impacts on jet formation properties of dual-cone shaped charge [J]. Initiators & Pyrotechnics, 2018(2): 35–39. doi: 10.3969/j.issn.1003-1480.2018.02.010
    [13]
    李明星, 王志军, 伊建亚, 等. 不同聚能装药水下作用效果的对比分析 [J]. 兵器材料科学与工程, 2017, 40(5): 95–99. doi: 10.14024/j.cnki.1004-244x.20170911.002

    LI M X, WANG Z J, YI J Y, et al. Comparative analysis of underwater effect for different shaped charge [J]. Ordnance Material Science and Engineering, 2017, 40(5): 95–99. doi: 10.14024/j.cnki.1004-244x.20170911.002
    [14]
    潘乾坤, 袁浩, 任凯, 等. 不同组合式聚能战斗部对水下目标的毁伤研究 [J]. 兵器装备工程学报, 2024, 45(5): 173–179. doi: 10.11809/bqzbgcxb2024.05.025

    PAN Q K, YUAN H, REN K, et al. Research on damage to underwater targets by different combined shaped charge warhead [J]. Journal of Ordnance Equipment Engineering, 2024, 45(5): 173–179. doi: 10.11809/bqzbgcxb2024.05.025
    [15]
    张春辉, 张斐, 王志军, 等. 复合材质杆式射流侵彻水下目标的数值模拟 [J]. 爆破器材, 2019, 48(1): 8–14. doi: 10.3969/j.issn.1001-8352.2019.01.002

    ZHANG C H, ZHANG F, WANG Z J, et al. Numerical simulation of composite-material rod-like jet penetrating underwater targets [J]. Explosive Materials, 2019, 48(1): 8–14. doi: 10.3969/j.issn.1001-8352.2019.01.002
    [16]
    王志凯, 梁永辉, 戴伯达, 等. 近自由液面聚能战斗部水下爆炸威力场 [J]. 现代应用物理, 2024, 15(2): 021005. doi: 10.12061/j.issn.2095-6223.2024.021005

    WANG Z K, LIANG Y H, DAI B D, et al. Underwater explosion power field of near-free surface shaped charge warhead [J]. Modern Applied Physics, 2024, 15(2): 021005. doi: 10.12061/j.issn.2095-6223.2024.021005
    [17]
    黄洪. 聚能装药水下爆炸对目标的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021: 176−185, 192.

    HUANG H. Damage characteristics of shaped charge underwater explosion to target [D]. Shenyang: Shenyang University of Technology, 2021: 176−185, 192.
    [18]
    周方毅, 詹发民, 黄雪峰, 等. 全尺寸圆锥-球缺组合药型罩聚能战斗部毁伤试验 [J]. 兵工学报, 2024, 45(Suppl 2): 251–258. doi: 10.12382/bgxb.2024.0084

    ZHOU F Y, ZHAN F M, HUANG X F, et al. Test research on damage effect of full-size shaped charge warhead with conical-spherical combined liner [J]. Acta Armamentarii, 2024, 45(Suppl 2): 251–258. doi: 10.12382/bgxb.2024.0084
    [19]
    张军, 李裕春, 黄骏逸, 等. 水下爆破聚能装药结构正交优化设计 [J]. 兵器装备工程学报, 2021, 42(2): 52–57. doi: 10.11809/bqzbgcxb2021.02.010

    ZHANG J, LI Y C, HUANG J Y, et al. Orthogonal optimization design of shaped charge structure for underwater blasting [J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 52–57. doi: 10.11809/bqzbgcxb2021.02.010
    [20]
    李兵, 刘念念, 陈高杰, 等. 水中聚能战斗部毁伤双层圆柱壳的数值模拟与试验研究 [J]. 兵工学报, 2018, 39(1): 38–45. doi: 10.3969/j.issn.1000-1093.2018.01.004

    LI B, LIU N N, CHEN G J, et al. Numerical simulation and experimental research on damage of shaped charge warhead to double-layer columniform shell [J]. Acta Armamentarii, 2018, 39(1): 38–45. doi: 10.3969/j.issn.1000-1093.2018.01.004
    [21]
    蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389

    JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. doi: 10.11883/bzycj-2021-0389
    [22]
    徐鹤峰. 组合药型罩水中毁伤元形成及侵彻性能研究 [D]. 沈阳: 沈阳理工大学, 2022: 24−26.

    XU H F. Study on formation and penetration performance of damage elements in water of composite liner [D]. Shenyang: Shenyang University of Technology, 2022: 24−26.
    [23]
    徐小棣, 梁增友, 盛鹏, 等. 带隔板组合药型罩对反应装甲侵彻后效作用研究 [J]. 火炮发射与控制学报, 2025, 46(3): 98–106. doi: 10.19323/j.issn.1673-6524.202405014

    XU X D, LIANG Z Y, SHENG P, et al. Study on after-effect of penetrating explosive reactive armor by combination liner with wave-shaper [J]. Journal of Gun Launch & Control, 2025, 46(3): 98–106. doi: 10.19323/j.issn.1673-6524.202405014
    [24]
    车龙, 郭策安, 潘琳琳, 等. 爆炸冲击作用下反坦克三角锥混凝土的毁伤特性数值模拟分析 [J]. 火炮发射与控制学报, 2025, 46(2): 53–59. doi: 10.19323/j.issn.1673-6524.202410006

    CHE L, GUO C A, PAN L L, et al. Numerical simulation analysis of damage characteristics of anti-tank triangular cone concrete under explosive impact [J]. Journal of Gun Launch & Control, 2025, 46(2): 53–59. doi: 10.19323/j.issn.1673-6524.202410006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(11)

    Article Metrics

    Article views(401) PDF downloads(25) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return