Volume 39 Issue 8
Aug 2025
Turn off MathJax
Article Contents
AN Hao, LI Qiang, ZHANG Zhengtao, WANG Qiyun, CONG Xinglong, FAN Zhuang. Microstructural Evolution Mechanism of Al-Based Nano-Powders under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 080101. doi: 10.11858/gywlxb.20251078
Citation: AN Hao, LI Qiang, ZHANG Zhengtao, WANG Qiyun, CONG Xinglong, FAN Zhuang. Microstructural Evolution Mechanism of Al-Based Nano-Powders under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 080101. doi: 10.11858/gywlxb.20251078

Microstructural Evolution Mechanism of Al-Based Nano-Powders under Impact Loading

doi: 10.11858/gywlxb.20251078
  • Received Date: 22 Apr 2025
  • Rev Recd Date: 04 Jun 2025
  • Available Online: 05 Jun 2025
  • Issue Publish Date: 05 Aug 2025
  • With the continuous improvement of the material performance requirements of the charged warheads, elucidating the microstructural evolution of nano-powders under shock loading becomes critical for optimizing damage-element materials. In this study, molecular dynamics simulations were employed to comparatively investigate the shock wave propagation characteristics, phase transition behavior, and dislocation evolution of typical Al-based nanostructured powders Al-Fe-Ni and Al-Fe. This study reveals the mechanisms of impact velocity and Ni element on the evolution of Al-based nanoparticles. The results indicate that increasing shock velocity significantly enhances the thermodynamic response of the materials and promotes phase transition. Fe and Ni particles exhibit minimal deformation at an impact velocity of 0.6 km/s. When the velocity was increased to 1.5 km/s, the pressure exceeds 35 GPa and the temperature surpasses 6000 K, resulting in the melting of Al particles and deep fusion of Fe and Ni particles. The thermodynamic coupling effects lead to the formation of a large number of other structures. Furthermore, shock velocity does not affect the spatial distribution of dislocations but significantly regulates dislocation density. The introduction of the Ni element enhances the thermodynamic response of the material, alters the evolution pathway of the body-centered cubic phase and increases the proportion of hexagonal close-packed structures. Moreover, Ni element introduction raises the dislocation density, adjusts the timing of dislocation reactions, and promotes the formation of sessile dislocations, dislocation pinning, and dislocation loop structures, thereby influencing the temporal evolution and spatial characteristics of dislocations. These findings provide a theoretical basis for optimizing the processing of damage-element materials and their application.

     

  • loading
  • [1]
    黄敏生, 黄嵩, 梁爽, 等. 离散位错动力学算法及其在材料塑性行为模拟中的应用 [J]. 科学通报, 2019, 64(18): 1864–1877. doi: 10.1360/N972018-01291

    HUANG M S, HUANG S, LIANG S, et al. Discrete dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials [J]. Chinese Science Bulletin, 2019, 64(18): 1864–1877. doi: 10.1360/N972018-01291
    [2]
    FENG H Q, YANG Z B, BAI Y T, et al. Effect of Cr content and cooling rate on the primary phase of Al-2.5Mn alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(12): 1551–1558. doi: 10.1007/s12613-019-1862-1
    [3]
    LI Q, JIANG C L, DU Y. Molecular dynamics study on dynamic mechanical behaviour of FeCoCrCuNi high entropy alloy [J]. Materials Technology, 2023, 38(1): 2200660. doi: 10.1080/10667857.2023.2200660
    [4]
    韦昭召. 不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟 [J]. 物理学报, 2025, 74(3): 036201. doi: 10.7498/aps.74.20241030

    WEI Z Z. Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations [J]. Acta Physica Sinica, 2025, 74(3): 036201. doi: 10.7498/aps.74.20241030
    [5]
    LI Q, JIANG C L, DU Y. Molecular-dynamics study on the impact energy release characteristics of Fe-Al energetic jets [J]. Materials, 2021, 14(18): 5249. doi: 10.3390/ma14185249
    [6]
    XIONG Y N, XIAO S F, DENG H Q, et al. Investigation of the shock-induced chemical reaction (SICR) in Ni+Al nanoparticle mixtures [J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17607–17617. doi: 10.1039/C7CP03176A
    [7]
    LIU X P, XING R L, ZHAI H, et al. Atomistic simulations of compressive response and deformation mechanisms of body-centered-cubic AlCrFeCoNi high-entropy alloys [J]. Physica B: Condensed Matter, 2023, 671: 415414. doi: 10.1016/j.physb.2023.415414
    [8]
    陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究 [J]. 爆炸与冲击, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324

    CHEN J L, LI S T, CHEN Y Q. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation [J]. Explosion and Shock Waves, 2024, 44(3): 031401. doi: 10.11883/bzycj-2023-0324
    [9]
    孟钰权. CoCrNiAl0.1Si0.1中熵合金低温和动态力学响应研究 [D]. 太原: 太原理工大学, 2021: 35–36.

    MENG Y Q. Mechanical response of CoCrNiAl0.1Si0.1 medium entropy alloys upon cryogenic temperatures and dynamic loading [D]. Taiyuan: Taiyuan University of Technology, 2021: 35–36.
    [10]
    WANG L, QIAO J W, MA S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Materials Science and Engineering: A, 2018, 727: 208–213. doi: 10.1016/j.msea.2018.05.001
    [11]
    熊永南. Ni+Al纳米粉末冲击压缩响应的分子动力学研究 [D]. 长沙: 湖南大学, 2019: 37.

    XIONG Y N. Molecular dynamic simulation of shock-compression response of Ni+Al nanopowders [D]. Changsha: Hunan University, 2019: 37.
    [12]
    FARKAS D, CARO A. Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys [J]. Journal of Materials Research, 2020, 35(22): 3031–3040. doi: 10.1557/jmr.2020.294
    [13]
    曾子文. 冲击加载下高熵合金微结构与力学性能的分子动力学模拟 [D]. 重庆: 重庆大学, 2022: 15–16.

    ZENG Z W. Molecular dynamics simulation of microstructure and mechanical properties of high entropy alloys under impact loading [D]. Chongqing: Chongqing University, 2022: 15–16.
    [14]
    张路明. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟 [D]. 太原: 太原理工大学, 2022: 19–20.

    ZHANG L M. Mechanical properties of AlxCoCrFeNi high-entropy alloy: a molecular dynamics study [D]. Taiyuan: Taiyuan University of Technology, 2022: 19–20.
    [15]
    胡锦灿. O22Cr17Ni12Mo2合金钢冲击载荷下的塑性行为位错动力学研究 [D]. 长春: 长春工业大学, 2023: 25–26.

    HU J C. Study on the dynamics of plastic behavior dislocation under the impact load of O22Cr17Ni12Mo2 alloy steel [D]. Changchun: Changchun University of Technology, 2023: 25–26.
    [16]
    卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算 [J]. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401

    LU Z P, ZHU W J, LU T C. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure [J]. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [17]
    李强, 姜春兰, 王在成. 细晶富铝Al/Fe复合材料动态力学性能及本构关系 [J]. 稀有金属材料与工程, 2015, 44(5): 1124–1128.

    LI Q, JIANG C L, WANG Z C. Dynamic mechanical properties and constitutive relationship of fine-grained Al/Fe composite materials with rich aluminium [J]. Rare Metal Materials and Engineering, 2015, 44(5): 1124–1128.
    [18]
    朱熠奇, 殷艳, 周留成, 等. 激光冲击铝合金微结构演化及力学行为的分子动力学模拟 [J]. 表面技术, 2022, 51(11): 1–9, 57. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.001

    ZHU Y Q, YIN Y, ZHOU L C, et al. Microstructure evolution and mechanical behavior of laser-shocked aluminium alloy by molecular dynamics simulations [J]. Surface Technology, 2022, 51(11): 1–9, 57. doi: 10.16490/j.cnki.issn.1001-3660.2022.11.001
    [19]
    FAN L, YANG T, ZHAO Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nature Communications, 2020, 11(1): 6240. doi: 10.1038/s41467-020-20109-z
    [20]
    解鸿偲. 高熵合金/石墨烯复合材料力学行为的分子动力学研究 [D]. 长春: 吉林大学, 2024: 95.

    XIE H C. Molecular dynamics study on the mechanical behavior of high-entropy alloy/graphene composites [D]. Changchun: Jilin University, 2024: 95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(297) PDF downloads(59) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return