| Citation: | ZHAO Liang, WU Nannan, CHEN Huixuan, LI Mingzhe, LIANG Xiaobo. Research Progress of Static Ultra-High Pressure Device[J]. Chinese Journal of High Pressure Physics, 2025, 39(9): 090203. doi: 10.11858/gywlxb.20251065 |
| [1] |
翟航, 杨锦坭, 王建云, 等. 高压下主族金属富氮化合物的结构与含能特性 [J]. 高压物理学报, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810
ZHAI H, YANG J N, WANG J Y, et al. Structure and energy properties of nitrogen-rich compounds of main group metals under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810
|
| [2] |
王莹莹. 高压下典型金属硫族化合物和氢化物的结构及超导电性研究 [D]. 长春: 吉林大学, 2022.
WANG Y Y. Structures and superconductivity of typical metal chalcogenides and hydrides under high pressure [D]. Changchun: Jilin University, 2022.
|
| [3] |
吴杰, 甘波, 宋文豪, 等. 冲击下黄铁矿脱硫及其对地球早期环境的影响 [J]. 高压物理学报, 2025, 39(3): 030101. doi: 10.11858/gywlxb.20240916
WU J, GAN B, SONG W H, et al. Shock-induced desulfurization of natural pyrite and its implications for the early Earth’s environment [J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 030101. doi: 10.11858/gywlxb.20240916
|
| [4] |
YANG X X, YE Q L. Synthesis of high-quality octahedral cBN crystals with large size using lithium metal as a catalyst [J]. Journal of Alloys and Compounds, 2013, 580: 1–4. doi: 10.1016/j.jallcom.2013.05.095
|
| [5] |
WANG X M, ZENG X Q, YAO S S, et al. The corrosion behavior of Ce-implanted magnesium alloys [J]. Materials Characterization, 2008, 59(5): 618–623. doi: 10.1016/j.matchar.2007.05.006
|
| [6] |
XIE L J, YONEDA A, YOSHINO T, et al. Graphite-boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures [J]. High Pressure Research, 2016, 36(2): 105–120. doi: 10.1080/08957959.2016.1164151
|
| [7] |
YI Z, FU W Z, LI M Z, et al. Numerical simulation and experimental verification of a novel double-layered split die for high pressure apparatus used for synthesizing superhard materials [J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(3): 377–385. doi: 10.1007/s12613-019-1747-3
|
| [8] |
MAO H K, BELL P M, HEMLEY R J. Ultrahigh pressures: optical observations and Raman measurements of hydrogen and deuterium to 1.47 Mbar [J]. Physical Review Letters, 1985, 55(1): 99–102. doi: 10.1103/PhysRevLett.55.99
|
| [9] |
FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure measurement made by the utilization of ruby sharp-line luminescence [J]. Science, 1972, 176(4032): 284–285. doi: 10.1126/science.176.4032.284
|
| [10] |
XU J A, MAO H K, BELL P M. High-pressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal [J]. Science, 1986, 232(4756): 1404–1406. doi: 10.1126/science.232.4756.1404
|
| [11] |
SCHULTZ E, MEZOUAR M, CRICHTON W, et al. Double-sided laser heating system for in situ high pressure-high temperature monochromatic X-ray diffraction at the esrf [J]. High Pressure Research, 2005, 25(1): 71–83. doi: 10.1080/08957950500076031
|
| [12] |
JAMIESON J C, LAWSON A W, NACHTRIEB N D. New device for obtaining X-ray diffraction patterns from substances exposed to high pressure [J]. Review of Scientific Instruments, 1959, 30(11): 1016–1019. doi: 10.1063/1.1716408
|
| [13] |
BELL P M, MAO H K, GOETTEL K. Ultrahigh pressure: beyond 2 megabars and the ruby fluorescence scale [J]. Science, 1984, 226(4674): 542–544. doi: 10.1126/science.226.4674.542
|
| [14] |
GREGORYANZ D S. Comment on “evidence of a first-order phase transition to metallic hydrogen” [J]. Physical Review B, 2017, 96(15): 52–54.
|
| [15] |
DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
|
| [16] |
ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
|
| [17] |
FASOL G, SCHILLING J S. New hydrostatic pressure cell to 90 kilobars for precise electrical and magnetic measurements at low temperatures [J]. Review of Scientific Instruments, 1978, 49(12): 1722–1724. doi: 10.1063/1.1135323
|
| [18] |
YANG Y F, LI M Z, WANG B L. Study on stress distribution of tangent split high pressure apparatus and its pressure bearing capacity [J]. Diamond and Related Materials, 2015, 58: 180–184. doi: 10.1016/j.diamond.2015.07.010
|
| [19] |
ZHAO L, LI M Z, LI R, et al. Stress analysis of the multi-layer stagger-split die for synthesizing gem quality large single crystal diamond [J]. Diamond and Related Materials, 2018, 83: 54–59. doi: 10.1016/j.diamond.2018.01.024
|
| [20] |
JACCARD D, HOLMES A T, BEHR G, et al. Superconductivity of ε-Fe: complete resistive transition [J]. Physics Letters A, 2002, 299(2/3): 282–286. doi: 10.1016/S0375-9601(02)00725-9
|
| [21] |
EREMETS M I. High pressure experimental methods [M]. Oxford: Oxford University Press, 1996: 102–107.
|
| [22] |
KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
|
| [23] |
KHVOSTANTSEV L G, SLESAREV V N, BRAZHKIN V V. Toroid type high-pressure device: history and prospects [J]. High Pressure Research, 2004, 24(3): 371–383. doi: 10.1080/08957950412331298761
|
| [24] |
NI P Y, HUA R D, LV Z L, et al. Performance analysis of compact thermoelectric generation device for harvesting waste heat [J]. Energy Conversion and Management, 2023, 291: 117333. doi: 10.1016/j.enconman.2023.117333
|
| [25] |
NELMES R J, LOVEDAY J S, WILSON R M, et al. Neutron diffraction study of the structure of deuterated ice Ⅷ to 10 GPa [J]. Physical Review Letters, 1993, 71(8): 1192–1195. doi: 10.1103/PhysRevLett.71.1192
|
| [26] |
BIANCA H, JAMIE J M, JOERG C N, et al. Modified Bridgman anvils for high pressure synthesis and neutron scattering [J]. High Pressure Research, 2019, 39(3): 1–13.
|
| [27] |
BILYALOV Y R, KAUROV A A, TSVYASHCHENKO A V. Pressure generation by a double-stage system using sintered diamond as the last stage anvil [J]. Review of Scientific Instruments, 1992, 63(4): 2311–2314. doi: 10.1063/1.1143155
|
| [28] |
HALL H T. Ultra-high-pressure, high-temperature apparatus: the “belt” [J]. Review of Scientific Instruments, 1960, 31(2): 125–131. doi: 10.1063/1.1716907
|
| [29] |
PETROVA A E, SIDOROV V A, STISHOV S M. High-pressure helium gas apparatus and hydrostatic toroid cell for low-temperatures applications [J]. Physica B: Condensed Matter, 2005, 359/360/361: 1463–1465. doi: 10.1016/j.physb.2005.01.454
|
| [30] |
YANG Y F, LI M Z, WANG B L, et al. A novel split-belt apparatus: the stress distribution and performance of its tangent split die [J]. High Pressure Research, 2015, 35(3): 247–253. doi: 10.1080/08957959.2015.1058934
|
| [31] |
SUMIYA H, IRIFUNE T. Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion [J]. Diamond and Related Materials, 2004, 13(10): 1771–1776. doi: 10.1016/j.diamond.2004.03.002
|
| [32] |
姚裕成. 人造金刚石和超高压高温技术 [M]. 北京: 化学工业出版社, 1996: 152–157.
YAO Y C. Synthetic diamond and ultra-high pressure high temperature technology [M]. Beijing: Chemical Industry Press, 1996: 152–157.
|
| [33] |
ZHAO L, LI M Z, YANG Y F, et al. Finite element analysis and experiment on high pressure apparatus with split cylinder [J]. High Pressure Research, 2017, 37(3): 377–388. doi: 10.1080/08957959.2017.1318130
|
| [34] |
GROENBAEK J, THUN N. Forming tool for a pressable material: 2001052977 [P]. 2001-07-26.
|
| [35] |
GROENBAEK J. High-pressure tool: 2001036080 [P]. 2001-05-25.
|
| [36] |
刘长海, 唐立强. 超高压容器损伤自增强的应力分析 [J]. 压力容器, 2005, 22(5): 20–22, 58. doi: 10.3969/j.issn.1001-4837.2005.05.006
LIU C H, TANG L Q. Stress analysis of vessel with self-reinforced damage under super-high pressure [J]. Pressure Vessel Technology, 2005, 22(5): 20–22, 58. doi: 10.3969/j.issn.1001-4837.2005.05.006
|
| [37] |
吴俊飞. 绕丝式超高压容器模糊优化设计 [J]. 压力容器, 2008, 25(1): 11–13, 55. doi: 10.3969/j.issn.1001-4837.2008.01.003
WU J F. Fuzzy optimization design of wire-wounded ultra-high pressure vessel [J]. Pressure Vessel Technology, 2008, 25(1): 11–13, 55. doi: 10.3969/j.issn.1001-4837.2008.01.003
|
| [38] |
刘志卫, 余其成, 胡海霞. 金属挤压筒结构研究进展 [J]. 塑性工程学报, 2021, 28(10): 1–8. doi: 10.3969/j.issn.1007-2012.2021.10.001
LIU Z W, YU Q C, HU H X. Research progress of metal extrusion container structure [J]. Journal of Plasticity Engineering, 2021, 28(10): 1–8. doi: 10.3969/j.issn.1007-2012.2021.10.001
|
| [39] |
刘志卫, 吴承伟, 童明俊, 等. 钢丝缠绕剖分式超高压模具等张力预紧分析 [J]. 高压物理学报, 2021, 35(1): 013302. doi: 10.11858/gywlxb.20200591
LIU Z W, WU C W, TONG M J, et al. Analysis of equal tension pre-tightening of steel wire winding split ultra-high pressure die [J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 013302. doi: 10.11858/gywlxb.20200591
|
| [40] |
陈孔军, 王强, 赵东, 等. 钢带缠绕预应力模具缠绕过程的数值模拟 [J]. 制造技术与机床, 2012(5): 33–36. doi: 10.3969/j.issn.1005-2402.2012.05.010
CHEN K J, WANG Q, ZHAO D, et al. Numerical simulation on the winding process of strip wound prestressed die [J]. Manufacturing Technology & Machine Tool, 2012(5): 33–36. doi: 10.3969/j.issn.1005-2402.2012.05.010
|
| [41] |
来小丽, 王强, 蔡冬梅, 等. 钢带缠绕预应力模具缠绕层数的确定方法 [J]. 塑性工程学报, 2008, 15(3): 152–156.
LAI X L, WANG Q, CAI D M, et al. Approach to determine winding layers of prestressed strip-wound dies [J]. Journal of Plasticity Engineering, 2008, 15(3): 152–156.
|
| [42] |
HALL H T. Some high-pressure, high-temperature apparatus design considerations: equipment for use at
|
| [43] |
HALL H T, MERRILL L, BARNETT J D. High pressure polymorphism in cesium [J]. Science, 1964, 146(3649): 1297–1299. doi: 10.1126/science.146.3649.1297
|
| [44] |
姚裕成, 胡光亚, 佟学礼. 从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向 [J]. 人工晶体学报, 1999, 28(1): 103–107. doi: 10.3969/j.issn.1000-985X.1999.01.021
YAO Y C, HU G Y, TONG X L. Discussing on the developing direction of large sized apparatus for making synthetic diamond in China according to the characteristics of belt-type press, cubic press and recess dies [J]. Journal of Synthetic Crystals, 1999, 28(1): 103–107. doi: 10.3969/j.issn.1000-985X.1999.01.021
|
| [45] |
韩奇钢. 人造金刚石的制备方法及其超高压技术 [J]. 高压物理学报, 2015, 29(4): 313–320. doi: 10.11858/gywlxb.2015.04.012
HAN Q G. Preparation methods and ultra-high pressure technologies of synthetic diamonds [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 313–320. doi: 10.11858/gywlxb.2015.04.012
|
| [46] |
HAN Q G, LIU B, HU M H, et al. Design an effective solution for commercial production and scientific research on gem-quality, large, single-crystal diamond by high pressure and high temperature [J]. Crystal Growth & Design, 2011, 11(4): 1000–1005. doi: 10.1021/cg100940b
|
| [47] |
许俊杰, 鲁森远, 陈孝鹏, 等. 新锤面顶锤在六面顶压机合成工业金刚石中的应用 [J]. 超硬材料工程, 2021, 33(2): 24–27. doi: 10.3969/j.issn.1673-1433.2021.02.008
XU J J, LU S Y, CHEN X P, et al. Application of a new hammer face anvil in the synthesis of industrial diamond by hexahedron press [J]. Superhard Material Engineering, 2021, 33(2): 24–27. doi: 10.3969/j.issn.1673-1433.2021.02.008
|
| [48] |
韩奇钢, 班庆初, 易政, 等. 超高压碳化钨顶砧新结构的设计与研究 [J]. 高压物理学报, 2014, 28(6): 686–690. doi: 10.11858/gywlxb.2014.06.007
HAN Q G, BAN Q C, YI Z, et al. Study on new structure of ultra-high pressure WC anvil [J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 686–690. doi: 10.11858/gywlxb.2014.06.007
|
| [49] |
WANG D J, LI H P, LIU C Q, et al. Electrical conductivity of synthetic quartz crystals at high temperature and pressure from complex impedance measurements [J]. Chinese Physics Letters, 2002, 19(8): 1211–1213. doi: 10.1088/0256-307X/19/8/354
|
| [50] |
何强, 唐俊杰, 王霏, 等. 一种适用于极端高温条件的六面顶压机实验组装 [J]. 高压物理学报, 2014, 28(2): 145–151. doi: 10.11858/gywlxb.2014.02.003
HE Q, TANG J J, WANG F, et al. High temperature stable assembly designed for cubic press [J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 145–151. doi: 10.11858/gywlxb.2014.02.003
|
| [51] |
KAWAI N, TOGAYA M, ONODERA A. A new device for pressure vessels [J]. Proceedings of the Japan Academy, 1973, 49(8): 623–626. doi: 10.2183/pjab1945.49.623
|
| [52] |
ITO E, KATSURA T, AIZAWA Y, et al. Chapter 22: high-pressure generation in the Kawai-type apparatus equipped with sintered diamond anvils: application to the wurtzite-rocksalt transformation in GaN [M]//CHEN J H, WANG Y B, DUFFY T S, et al. Advances in High-Pressure Technology for Geophysical Applications. Amsterdam: Elsevier, 2005: 451–460.
|
| [53] |
YAMAZAKI D, ITO E. High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils [J]. High Pressure Research, 2020, 40(1): 3–11. doi: 10.1080/08957959.2019.1689975
|
| [54] |
TETSUO I, FUTOSHI I, TORU S. A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond [J]. Physics of the Earth and Planetary Interiors, 2014, 228(22): 255–261.
|
| [55] |
MUELLER H J, BECKMANN F, DOBSON D P, et al. New techniques for high pressure falling sphere viscosimetry in DIA-type large volume presses [J]. High Pressure Research, 2014, 34(3): 345–354. doi: 10.1080/08957959.2014.950262
|
| [56] |
王文丹, 贺端威, 王海阔, 等. 二级6-8型大腔体装置的高压发生效率机理研究 [J]. 物理学报, 2010, 59(5): 3107–3115. doi: 10.7498/aps.59.3107
WANG W D, HE D W, WANG H K, et al. Research on pressure generation efficiency of 6-8 type multianvil high pressure apparatus [J]. Acta Physica Sinica, 2010, 59(5): 3107–3115. doi: 10.7498/aps.59.3107
|
| [57] |
张佳威, 李强, 王俊普, 等. 二次加压对六面顶压腔压力发生效率和压力密封性能的影响 [J]. 高压物理学报, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
ZHANG J W, LI Q, WANG J P, et al. Effect of re-compression on the pressure-generation efficiency and pressure-seal capability of large volume cubic press [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
|
| [58] |
KAWAI N, ENDO S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus [J]. Review of Scientific Instruments, 1970, 41(8): 1178–1181. doi: 10.1063/1.1684753
|
| [59] |
REZA A, HENRY Z, CARTER C. High pressure-high temperature growth of diamond crystals using split sphere apparatus [J]. Diamond and Related Materials, 2005, 14(11/12): 1916–1919.
|
| [60] |
YELISSEYEV A, NADOLINNY V, FEIGELSON B, et al. Spatial distribution of impurity defects in synthetic diamonds obtained by the BARS technology [J]. Diamond and Related Materials, 1996, 5(10): 1113–1117. doi: 10.1016/0925-9635(96)00511-0
|