Volume 39 Issue 10
Oct 2025
Turn off MathJax
Article Contents
LIU Jiawei, MA Honghao, GE Yun, WANG Luqing. Detonation Propagation Behaviors in an Obstructed Bent Tube[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105201. doi: 10.11858/gywlxb.20251055
Citation: LIU Jiawei, MA Honghao, GE Yun, WANG Luqing. Detonation Propagation Behaviors in an Obstructed Bent Tube[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105201. doi: 10.11858/gywlxb.20251055

Detonation Propagation Behaviors in an Obstructed Bent Tube

doi: 10.11858/gywlxb.20251055
  • Received Date: 20 Mar 2025
  • Rev Recd Date: 08 Apr 2025
  • Available Online: 10 Apr 2025
  • Issue Publish Date: 05 Oct 2025
  • The propagation behaviors of hydrogen-oxygen detonation wave in a bent tube containing an array of obstacles were experimentally investigated at different initial pressures. A straight tube with the same configuration was chosen as the control group. The bent tube was a semicircular tube with a square cross-section. The obstacles were rectangular and the blockage ratio was 40%. Through pressure monitoring and soot foil recording, the results show that the propagation process of the detonation wave between obstacles can be roughly divided into five stages, which are irregular cells, no cells, finer cells, transition zone and normal cells, respectively. Firstly, after the detonation wave in the bent tube diffracts along the obstacle, it does not decouple immediately. The detonation wave undergoes a transient failure due to the action of the rarefaction wave after a head-on impact with the bottom wall to form irregular cells. Then a planar overdriven detonation wave is formed at the outer wall and gradually expands to the inner wall. Afterwards, the overdriven detonation gradually decays into a stable detonation. However, when the initial pressure decreases gradually in the straight tube, local decoupling occurs after the detonation wave diffracts along the obstacle. This results in the formation of a no cells region on the bottom wall first, then the five stages mentioned above occur. In addition, during the stable detonation stage, the detonation cell width in the bent tube decreases gradually from the inner wall to the outer wall and is approximately linearly distributed. The cell width from the detonation database at the corresponding initial pressure is closer to that at the inner wall. The cell width in the straight tube is in good agreement with the data from the detonation database.

     

  • loading
  • [1]
    LEE J H S, MOEN I O. The mechans of transition from deflagration to detonation in vapor cloud explosions [J]. Progress in Energy and Combustion Science, 1980, 6(4): 359–389. doi: 10.1016/0360-1285(80)90011-8
    [2]
    LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts [J]. Journal of Propulsion and Power, 2014, 30(5): 1125–1142. doi: 10.2514/1.B34802
    [3]
    MEHR S H, CICCARELLI G. DDT run-up distance in an obstructed tube [J]. Combustion and Flame, 2023, 255: 112906. doi: 10.1016/j.combustflame.2023.112906
    [4]
    PERALDI O, KNYSTAUTAS R, LEE J H. Criteria for transition to detonation in tubes [J]. Symposium (International) on Combustion, 1988, 21(1): 1629–1637. doi: 10.1016/S0082-0784(88)80396-5
    [5]
    KUZNETSOV M, ALEKSEEV V, MATSUKOV I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture [J]. Shock Waves, 2005, 14(3): 205–215. doi: 10.1007/s00193-005-0265-6
    [6]
    ENDO T, KASAHARA J, MATSUO A, et al. Pressure history at the thrust wall of a simplified pulse detonation engine [J]. AIAA Journal, 2004, 42(9): 1921–1930. doi: 10.2514/1.976
    [7]
    贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制 [J]. 高压物理学报, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610

    HE S J, REN H L, LI J. Initiation mechanism of detonation wave in an annular channel [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202. doi: 10.11858/gywlxb.20220610
    [8]
    NAKAYAMA H, MORIYA T, KASAHARA J, et al. Stable detonation wave propagation in rectangular-cross-section curved channels [J]. Combustion and Flame, 2012, 159(2): 859–869. doi: 10.1016/j.combustflame.2011.07.022
    [9]
    YUAN X Q, ZHOU J, LIN Z Y, et al. Adaptive simulations of detonation propagation in 90-degree bent tubes [J]. International Journal of Hydrogen Energy, 2016, 41(40): 18259–18272. doi: 10.1016/j.ijhydene.2016.07.130
    [10]
    齐骏, 潘振华, 张彭岗, 等. 弯管内连续旋转爆轰波传播模式实验研究 [J]. 工程热物理学报, 2017, 38(2): 435–439.

    QI J, PAN Z H, ZHANG P G, et al. Experimental study on the propagation mode of continuous rotating detonation through the bend [J]. Journal of Engineering Thermophysics, 2017, 38(2): 435–439.
    [11]
    FROLOV S M, AKSENOV V S, SHAMSHIN I O. Shock wave and detonation propagation through U-bend tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2421–2428. doi: 10.1016/j.proci.2006.07.197
    [12]
    OTSUKA S, SUZUKI M, YAMAMOTO M. Numerical investigation on detonation wave through U-bend [J]. Journal of Thermal Science, 2010, 19(6): 540–544. doi: 10.1007/s11630-010-0421-x
    [13]
    ZHENG H T, ZHU W L, JIA X B, et al. Eulerian-Lagrangian modeling of deflagration to detonation transition in n-decane/oxygen/nitrogen mixtures [J]. Physics of Fluids, 2022, 34(12): 126110. doi: 10.1063/5.0125327
    [14]
    LUO C, ZANGANEH J, MOGHTADERI B. A 3D numerical study of detonation wave propagation in various angled bending tubes [J]. Fire Safety Journal, 2016, 86: 53–64. doi: 10.1016/j.firesaf.2016.10.002
    [15]
    KUDO Y, NAGURA Y, KASAHARA J, et al. Oblique detonation waves stabilized in rectangular-cross-section bent tubes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2319–2326. doi: 10.1016/j.proci.2010.08.008
    [16]
    王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究 [J]. 爆炸与冲击, 2003, 23(5): 448–453. doi: 10.11883/1001-1455(2003)05-0448-6

    WANG C J, XU S L, GUO C M. Experimental investigation on gaseous detonation propagation through a semi-circle bend tube [J]. Explosion and Shock Waves, 2003, 23(5): 448–453. doi: 10.11883/1001-1455(2003)05-0448-6
    [17]
    LI J, REN H L, NING J G. Numerical application of additive Runge-Kutta methods on detonation interaction with pipe bends [J]. International Journal of Hydrogen Energy, 2013, 38(21): 9016–9027. doi: 10.1016/j.ijhydene.2013.04.126
    [18]
    PAN Z H, CHEN K P, QI J, et al. The propagation characteristics of curved detonation wave: experiments in helical channels [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3585–3592. doi: 10.1016/j.proci.2018.06.167
    [19]
    RODRIGUEZ V, JOURDAIN C, VIDAL P, et al. An experimental evidence of steadily-rotating overdriven detonation [J]. Combustion and Flame, 2019, 202: 132–142. doi: 10.1016/j.combustflame.2019.01.016
    [20]
    褚驰, 翁春生, 武郁文, 等. 基于预爆轰点火方式的连续旋转爆轰发动机起爆过程分析 [J]. 弹道学报, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001

    CHU C, WENG C S, WU Y W, et al. Analysis of initiation process of continuous rotating detonation engine based on pre-detonation ignition [J]. Journal of Ballistics, 2021, 33(1): 1–10. doi: 10.12115/j.issn.1004-499X(2021)01-001
    [21]
    LEE S H, JO D R, CHOI J Y. Effect of curvature on the detonation wave propagation characteristics in annular channels [C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2008.
    [22]
    LI J, NING J G, ZHAO H, et al. Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels [J]. Chinese Physics Letters, 2015, 32(4): 048202. doi: 10.1088/0256-307X/32/4/048202
    [23]
    ZHOU N, WANG W X, ZHANG G W, et al. Numerical simulation study on the combustion rule of bending structure in pipes [J]. Combustion Science and Technology, 2018, 190(9): 1500–1514. doi: 10.1080/00102202.2018.1424142
    [24]
    YAN C A, NG H D, MI X C. A numerical study on the influence of increased instability of quasi-detonation on the critical tube diameter phenomenon [J]. Proceedings of the Combustion Institute, 2023, 39(3): 2835–2845. doi: 10.1016/j.proci.2022.11.007
    [25]
    王鲁庆, 马宏昊, 王波, 等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究 [J]. 高压物理学报, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687

    WANG L Q, MA H H, WANG B, et al. Detonation propagation in hydrogen/methane-air mixtures in a round tube filled with orifice plates [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
    [26]
    MONNIER V, RODRIGUEZ V, VIDAL P, et al. An analysis of three-dimensional patterns of experimental detonation cells [J]. Combustion and Flame, 2022, 245: 112310. doi: 10.1016/j.combustflame.2022.112310
    [27]
    MELGUIZO-GAVILANES J, RODRIGUEZ V, VIDAL P, et al. Dynamics of detonation transmission and propagation in a curved chamber: a numerical and experimental analysis [J]. Combustion and Flame, 2021, 223: 460–473. doi: 10.1016/j.combustflame.2020.09.032
    [28]
    PAN Z H, QI J, PAN J F, et al. Fabrication of a helical detonation channel: effect of initial pressure on the detonation propagation modes of ethylene/oxygen mixtures [J]. Combustion and Flame, 2018, 192: 1–9. doi: 10.1016/j.combustflame.2018.01.041
    [29]
    BALLOSSIER Y, VIROT F, MELGUIZO-GAVILANES J. Flame acceleration and detonation onset in narrow channels: simultaneous schlieren visualization [J]. Combustion and Flame, 2023, 254: 112833. doi: 10.1016/j.combustflame.2023.112833
    [30]
    SUN X X, LU S X. Effect of obstacle thickness on the propagation mechanisms of a detonation wave [J]. Energy, 2020, 198: 117186. doi: 10.1016/j.energy.2020.117186
    [31]
    KANESHIGE M, SHEPHERD J E. Detonation database [DB/OL]. (1997-07-30)[2025-01-17]. https://shepherd.caltech.edu/EDL/publications/m_kane97b/db.pdf.
    [32]
    齐骏. 爆轰波在多层弯管中传播特性的研究 [D]. 镇江: 江苏大学, 2018: 42–43.

    QI J. Study on the propagation characteristics of detonation wave in multi-layer bend tube [D]. Zhenjiang: Jiangsu University, 2018: 42–43.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(466) PDF downloads(23) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return