| Citation: | ZHU Zhengde, LIU Feng, KUANG Zhao, FU Jiakun. Influence of Silicon Nitride Content on Explosive Performance of Bulk Emulsion Explosive[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105101. doi: 10.11858/gywlxb.20251031 |
| [1] |
汪旭光. 乳化炸药 [M]. 2版. 北京: 冶金工业出版社, 2008.
WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008.
|
| [2] |
钱海. 铝粉对乳化炸药爆炸性能和热安定性的影响 [D]. 淮南: 安徽理工大学, 2017.
QIAN H. Effect of aluminum powder on detonation performance and thermal stability of emulsion explosives [D]. Huainan: Anhui University of Science and Technology, 2017.
|
| [3] |
YUNOSHEV A S, PLASTININ A V, VORONIN M S. Effect of aluminum additive on the detonation velocity and acceleration ability of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2021, 57(6): 719–725. doi: 10.1134/S0010508221060113
|
| [4] |
MISHRA A K, AGRAWAL H, RAUT M. Effect of aluminum content on detonation velocity and density of emulsion explosives [J]. Journal of Molecular Modeling, 2019, 25(3): 70. doi: 10.1007/s00894-019-3961-3
|
| [5] |
龚悦, 何杰, 汪旭光, 等. 钛粉对乳化炸药爆轰性能和热分解特性的影响 [J]. 含能材料, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006
GONG Y, HE J, WANG X G, et al. Influence of titanium powder on detonation performances and thermal decomposition characteristics of emulsion explosive [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 304–308. doi: 10.11943/j.issn.1006-9941.2017.04.006
|
| [6] |
程扬帆, 汪泉, 龚悦, 等. MgH2型复合敏化储氢乳化炸药的制备及其爆轰性能 [J]. 化工学报, 2017, 68(4): 1734–1739. doi: 10.11949/j.issn.0438-1157.20161341
CHENG Y F, WANG Q, GONG Y, et al. Preparation and detonation properties of MgH2 type of composite sensitized emulsion explosives [J]. CIESC Journal, 2017, 68(4): 1734–1739. doi: 10.11949/j.issn.0438-1157.20161341
|
| [7] |
程扬帆, 汪泉, 龚悦, 等. 敏化方式对MgH2型储氢乳化炸药爆轰性能的影响 [J]. 含能材料, 2017, 25(2): 167–172. doi: 10.11943/j.issn.1006-9941.2017.02.013
CHENG Y F, WANG Q, GONG Y, et al. Effect of sensitizing methods on the detonation performances of MgH2-based hydrogen storage emulsion explosives [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 167–172. doi: 10.11943/j.issn.1006-9941.2017.02.013
|
| [8] |
CHENG Y F, MA H H, LIU R, et al. Explosion power and pressure desensitization resisting property of emulsion explosives sensitized by MgH2 [J]. Journal of Energetic Materials, 2014, 32(3): 207–218. doi: 10.1080/07370652.2013.818078
|
| [9] |
CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. doi: 10.1002/prep.201700045
|
| [10] |
WANG F, MA H H, SHEN Z W. Experimental study on the effect of titanium hydride content on the detonation performance of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(2): e202300235. doi: 10.1002/prep.202300235
|
| [11] |
LIU R, WANG X G, WANG H, et al. Thermal decomposition behaviors and reaction mechanism of emulsion explosive with the addition of TiH2 powders [J]. Case Studies in Thermal Engineering, 2025, 65: 105583. doi: 10.1016/j.csite.2024.105583
|
| [12] |
张续, 吴红波, 张洪, 等. 油相材料对现场混装乳化炸药性能的影响 [J]. 安徽化工, 2019, 45(4): 65–67. doi: 10.3969/j.issn.1008-553X.2019.04.021
ZHANG X, WU H B, ZHANG H, et al. Effect of oil phase materials on the performance of field mixed emulsion explosive [J]. Anhui Chemical Industry, 2019, 45(4): 65–67. doi: 10.3969/j.issn.1008-553X.2019.04.021
|
| [13] |
刘锋, 何祥, 吴攀宇, 等. 内相粒径对现场混装乳化炸药爆炸性能的影响 [J]. 火炸药学报, 2023, 46(9): 825–833. doi: 10.14077/j.issn.1007-7812.202211024
LIU F, HE X, WU P Y, et al. Effect of internal phase particle size on explosion performance of on-site mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(9): 825–833. doi: 10.14077/j.issn.1007-7812.202211024
|
| [14] |
牛草原, 黄文尧, 刘小辉, 等. 多孔粒状硝酸铵质量分数对现场混装乳化炸药的性能影响 [J]. 火炸药学报, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017
NIU C Y, HUANG W Y, LIU X H, et al. Influence of porous granular ammonium nitrate content on the performance of field mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2023, 46(11): 999–1006. doi: 10.14077/j.issn.1007-7812.202302017
|
| [15] |
匡照. 氮化铝质量分数对现场混装乳化炸药性能的影响 [D]. 淮南: 安徽理工大学, 2024.
KUANG Z. Effect of aluminum nitride content on the performance of field-mixed emulsion explosives [D]. Huainan: Anhui University of Science and Technology, 2024.
|
| [16] |
郇昌天, 李强, 蒋丹宇. 氮化硅陶瓷的应用和酸腐蚀研究进展 [J]. 现代技术陶瓷, 2011, 32(3): 3–8. doi: 10.3969/j.issn.1005-1198.2011.03.002
HUAN C T, LI Q, JIANG D Y. Application of Si3N4 and research progress on corrosion behavior [J]. Advanced Ceramics, 2011, 32(3): 3–8. doi: 10.3969/j.issn.1005-1198.2011.03.002
|
| [17] |
陈思员, 姜贵庆, 俞继军, 等. 氮化硅的氧化机制研究 [J]. 宇航材料工艺, 2010, 40(1): 28–31. doi: 10.3969/j.issn.1007-2330.2010.01.007
CHEN S Y, JIANG G Q, YU J J, et al. Oxidation mechanism study of silicon nitride [J]. Aerospace Materials & Technology, 2010, 40(1): 28–31. doi: 10.3969/j.issn.1007-2330.2010.01.007
|
| [18] |
刘胜, 王营营, 满延进, 等. 氮化硅粉改性及其陶瓷高温摩擦磨损性能研究 [J]. 陶瓷学报, 2024, 45(1): 139–149. doi: 10.13957/j.cnki.tcxb.2024.01.014
LIU S, WANG Y Y, MAN Y J, et al. Modification of silicon nitride powders and friction and wear properties of ceramics at high temperature [J]. Journal of Ceramics, 2024, 45(1): 139–149. doi: 10.13957/j.cnki.tcxb.2024.01.014
|
| [19] |
黄勇, 代建清, 许兴利, 等. 氮化硅粉体的表面化学性质和水中的胶体特性 [J]. 硅酸盐通报, 2000, 19(2): 35–42, 28. doi: 10.3969/j.issn.1001-1625.2000.02.011
HUANG Y, DAI J Q, XU X L, et al. Surface characteristics and aqueous colloidal chemistry of silicon nitride powder [J]. Bulletin of the Chinese Ceramic Society, 2000, 19(2): 35–42, 28. doi: 10.3969/j.issn.1001-1625.2000.02.011
|
| [20] |
王月隆. 氮化硅粉体合成及其高导热陶瓷的组织与性能研究 [D]. 北京: 北京科技大学, 2022.
WANG Y L. Research on powder preparation and microstructure and properties of silicon nitride ceramics with high thermal conductivity [D]. Beijing: University of Science and Technology Beijing, 2022.
|
| [21] |
黄寅生. 炸药理论 [M]. 北京: 北京理工大学出版社, 2016.
HUANG Y S. Explosives theory [M]. Beijing: Beijing Institute of Technology Press, 2016.
|
| [22] |
刘锋, 匡照, 吴攀宇, 等. 内相粒径对现场混装乳化炸药热感度的影响 [J]. 火炸药学报, 2022, 45(5): 697–702. doi: 10.14077/j.issn.1007-7812.202204018
LIU F, KUANG Z, WU P Y, et al. Effect of internal phase particle size on thermal sensitivity of on-site mixed emulsion explosive [J]. Chinese Journal of Explosives & Propellants, 2022, 45(5): 697–702. doi: 10.14077/j.issn.1007-7812.202204018
|
| [23] |
崔雪峰, 刘万义, 孟祥宇, 等. 乳化炸药的配方设计与应用评价 [J]. 采矿技术, 2021, 21(1): 27–29, 36. doi: 10.3969/j.issn.1671-2900.2021.01.009
CUI X F, LIU W Y, MENG X Y, et al. Formulation design and application evaluation of emulsion explosive [J]. Mining Technology, 2021, 21(1): 27–29, 36. doi: 10.3969/j.issn.1671-2900.2021.01.009
|
| [24] |
崔鑫. 乳化炸药热稳定性研究 [D]. 淮南: 安徽理工大学, 2007.
CUI X. Study of thermal stability of emulsion explosive [D]. Huainan: Anhui University of Science and Technology, 2007.
|
| [25] |
刘锋, 汪全, 吴攀宇, 等. 内相粒径对现场混装乳化炸药基质抗振动性能的影响 [J]. 化工学报, 2022, 73(9): 4217–4225. doi: 10.11949/0438-1157.20220742
LIU F, WANG Q, WU P Y, et al. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217–4225. doi: 10.11949/0438-1157.20220742
|
| [26] |
国家技术监督局. 炸药猛度试验铅柱压缩法: GB/T 12440—1990 [S]. 北京: 中国标准出版社, 1990.
|
| [27] |
CALIFANO V, CALABRIA R, MASSOLI P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions [J]. Fuel, 2014, 117: 87–94. doi: 10.1016/j.fuel.2013.08.073
|
| [28] |
HAMPSHIRE S, POMEROY M J. Silicon nitride grain boundary glasses: chemistry, structure and properties [J]. Key Engineering Materials, 2011, 484: 46–51. doi: 10.4028/www.scientific.net/KEM.484.46
|
| [29] |
隋智通. 硅氮化反应的平衡及动力学研究 [J]. 东北工学院学报, 1980(1): 31–38.
SUI Z T. Equilibrations and kinetics of silicon nitridation [J]. Journal of Northeast Institute of Technology, 1980(1): 31–38.
|
| [30] |
向茂乔, 耿玉琦, 朱庆山. 氮化硅粉体制备技术及粉体质量研究进展 [J]. 化工学报, 2022, 73(1): 73–84. doi: 10.11949/0438-1157.20210866
XIANG M Q, GENG Y Q, ZHU Q S. Research advances in preparation technology and quality of silicon nitride powder [J]. CIESC Journal, 2022, 73(1): 73–84. doi: 10.11949/0438-1157.20210866
|
| [31] |
黄文尧, 颜事龙. 炸药化学与制造 [M]. 北京: 冶金工业出版社, 2009.
HUANG W Y, YAN S L. Explosives chemistry and production [M]. Beijing: Metallurgical Industry Press, 2009.
|
| [32] |
杨胜晖, 郑波. 含铝温压炸药的爆炸能量结构研究 [J]. 爆破器材, 2019, 48(2): 20–24. doi: 10.3969/j.issn.1001-8352.2019.02.004
YANG S H, ZHENG B. Explosion energy structure of aluminized thermobaric explosive [J]. Explosive Materials, 2019, 48(2): 20–24. doi: 10.3969/j.issn.1001-8352.2019.02.004
|
| [33] |
许祖熙, 段卫东, 刘瑞, 等. 铝粉质量分数及颗粒度对乳化炸药做功能力的影响 [J]. 工程爆破, 2017, 23(6): 86–90. doi: 10.3969/j.issn.1006-7051.2017.06.019
XU Z X, DUAN W D, LIU R, et al. The effect of aluminum content and granularity on workability of emulsion explosives [J]. Engineering Blasting, 2017, 23(6): 86–90. doi: 10.3969/j.issn.1006-7051.2017.06.019
|
| [34] |
XIE R J, MITOMO M, HUANG L P, et al. Joining of silicon nitride ceramics for high-temperature applications [J]. Journal of Materials Research, 2000, 15(1): 136–141. doi: 10.1557/JMR.2000.0023
|
| [35] |
NARUSHIMA T, GOTO T, HAGIWARA J, et al. High-temperature oxidation of chemically vapor-deposited silicon nitride in a carbon monoxide-carbon dioxide atmosphere [J]. Journal of the American Ceramic Society, 1994, 77(11): 2921–2925. doi: 10.1111/j.1151-2916.1994.tb04525.x
|
| [36] |
何志伟, 朱文宇, 葛玉强, 等. 铝灰替代含铝乳化炸药中铝粉的可行性研究 [J]. 爆破器材, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006
HE Z W, ZHU W Y, GE Y Q, et al. Feasibility study on substitution of aluminum powder in aluminized emulsion explosive with aluminum ash [J]. Explosive Materials, 2023, 52(2): 32–38. doi: 10.3969/j.issn.1001-8352.2023.02.006
|
| [37] |
WANG Y X, MA H H, SHEN Z W, et al. Detonation characteristics of emulsion explosives sensitized by hydrogen-storage glass microballoons [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(9): 939–947. doi: 10.1002/prep.201800044
|
| [38] |
CHENG Y F, YAO Y L, LI D Y, et al. Effects of boron powders on the detonation performance of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(3): e202200277. doi: 10.1002/prep.202200277
|