Volume 39 Issue 8
Aug 2025
Turn off MathJax
Article Contents
XU Wei, QI Wenming, ABDUGOPUR Hadiqa, LU Guihua, WEI Lai, LI Peng, GAO Min. First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028
Citation: XU Wei, QI Wenming, ABDUGOPUR Hadiqa, LU Guihua, WEI Lai, LI Peng, GAO Min. First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 081101. doi: 10.11858/gywlxb.20251028

First-Principles Study of the Structural Phase Transition and Physical Properties in NaI under High Pressure

doi: 10.11858/gywlxb.20251028
  • Received Date: 17 Feb 2025
  • Rev Recd Date: 14 Apr 2025
  • Available Online: 17 Apr 2025
  • Issue Publish Date: 05 Aug 2025
  • It has been shown that NaI undergoes a pressure-induced phase transition which is different from other alkali metal halides such as NaCl. Previous X-ray diffraction experiments show that NaI will experience a structure phase transition from B1 to B33 phase under high pressure. However, there may exist pressure difference of the structure phase transition in experiments due to the lack of pressure transmit medium and the high water absorption of NaI. In this study, we predict the structural phase transition from B1−B33 phase at 20 GPa based on density functional theory of the first principles calculation method. The results of the theoretical calculations confirm the previous reported data, but the calculated pressure of the phase transition is slightly lower than the experimental value. In addition, detailed evolution of physical properties in NaI under high pressure was investigated. The band gap of NaI shows a gradual closure with increasing pressure, while its brittleness and ultraviolet light reflectance exhibit an enhancement. This work establishes a theoretical foundation for exploring the potential applications of alkali metal halides under extreme conditions.

     

  • loading
  • [1]
    FATEMI D J, BLOOMFIELD L A. Photoelectron spectroscopy of sodium iodide clusters containing single hydroxyl ions or water molecules [J]. Physical Review A, 2002, 66(1): 013202. doi: 10.1103/PhysRevA.66.013202
    [2]
    FATEMI F K, DALLY A J, BLOOMFIELD L A. Photodesorption of alkali anions from alkali-halide cluster anions [J]. Physical Review Letters, 2003, 91(7): 073401. doi: 10.1103/PhysRevLett.91.073401
    [3]
    MEI A B, HELLMAN O, WIREKLINT N, et al. Dynamic and structural stability of cubic vanadium nitride [J]. Physical Review B, 2015, 91(5): 054101. doi: 10.1103/PhysRevB.91.054101
    [4]
    KANHAIYALAL, DIGPRATAP S. Interatomic distances for alkali halides at high pressure [J]. Computational Condensed Matter, 2024, 38: e00877. doi: 10.1016/j.cocom.2023.e00877
    [5]
    DEMMEL F, ALCARAZ O, TRULLAS J. Br diffusion in molten NaBr explored by coherent quasielastic neutron scattering [J]. Physical Review E, 2016, 93(4): 042604. doi: 10.1103/PhysRevE.93.042604
    [6]
    KUMAR P, ROY D R. Optical and thermoelectric properties of square lattice phases of alkali halide compounds [J]. Journal of Physics and Chemistry of Solids, 2023, 174: 111142. doi: 10.1016/j.jpcs.2022.111142
    [7]
    KUMAR P, RAJPUT K, ROY D R. Structural, vibrational, electronic, elastic and thermoelectric properties of monolayer alkali halide compounds from first principles investigation [J]. Materials Today Communications, 2021, 29: 102855. doi: 10.1016/j.mtcomm.2021.102855
    [8]
    KAPOOR S, SINGH S. The study of mechanical properties of lithium halides under high pressure at room temperature [J]. Solid State Communications, 2022, 341: 114574. doi: 10.1016/j.ssc.2021.114574
    [9]
    LAGOS M, ASENJO F, HAUYÓN R, et al. Line shapes of narrow optical bands: infrared absorption by U centers and heavier impurities in alkali halides [J]. Physical Review B, 2008, 77(10): 104305. doi: 10.1103/PhysRevB.77.104305
    [10]
    SAFARI M, MASKANEH P, MOGHADAM A D, et al. Lithium halide monolayers: structural, electronic and optical properties by first principles study [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83: 426–433. doi: 10.1016/j.physe.2016.01.025
    [11]
    HOYA J, LABORDE J I, RICHARD D, et al. Ab initio study of F-centers in alkali halides [J]. Computational Materials Science, 2017, 139: 1–7. doi: 10.1016/j.commatsci.2017.07.015
    [12]
    WANG J J, DENG M H, CHEN Y H, et al. Structural, elastic, electronic and optical properties of lithium halides (LiF, LiCl, LiBr, and LiI): first-principle calculations [J]. Materials Chemistry and Physics, 2020, 244: 122733. doi: 10.1016/j.matchemphys.2020.122733
    [13]
    阿卜力孜·麦提图尔荪, 艾尼瓦尔·吾术尔, 谢翠焕, 等. 碳酸铅在不同传压介质下的高压拉曼研究 [J]. 高压物理学报, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813

    ABLIZ M, ANWAR H, XIE C H, et al. High pressure raman spectroscopic study of PbCO3 in different pressure transmitting medium [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
    [14]
    陈炜珊, 谭毅, 谭大勇, 等. NaPO3高压结构行为的第一性原理理论研究 [J]. 高压物理学报, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755

    CHEN W S, TAN Y, TAN D Y, et al. First-principles theoretical study on the structure behaviors of NaPO3 under compression [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755
    [15]
    王晓雪, 丁雨晴, 王晖. 硝酸铷高压相变和物理性质的第一性原理研究 [J]. 高压物理学报, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776

    WANG X X, DING Y Q, WANG H. First-principles study of the high-pressure phase transition and physical properties of rubidium nitrate [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776
    [16]
    LI N N, MANOUN B, TAMRAOUI Y, et al. Structural and electronic phase transitions of Co2Te3O8 spiroffite under high pressure [J]. Physical Review B, 2019, 99(24): 245125. doi: 10.1103/PhysRevB.99.245125
    [17]
    COVA F, BLANCO M V, HANFLAND M, et al. Study of the high pressure phase evolution of Co3O4 [J]. Physical Review B, 2019, 100(5): 054111. doi: 10.1103/PhysRevB.100.054111
    [18]
    RUIZ-FUERTES J, HIRSCH A, FRIEDRICH A, et al. High-pressure phase of LaPO4 studied by X-ray diffraction and second harmonic generation [J]. Physical Review B, 2016, 94(13): 134109. doi: 10.1103/PhysRevB.94.134109
    [19]
    李佐, 刘云, 廖大麟, 等. 高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究 [J]. 高压物理学报, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514

    LI Z, LIU Y, LIAO D L, et al. First-principles study on structural, electronic and optical properties of G2ZT crystal under high pressure [J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
    [20]
    曾阳阳, 朱刚贝, 王文涛, 等. 高压下硝酸肼结构演化的中远红外光谱和第一性原理计算研究 [J]. 高压物理学报, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804

    ZENG Y Y, ZHU G B, WANG W T, et al. Mid- and far-infrared spectroscopic and first-principles computational study of the structural evolution of hydrazine nitrate under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804
    [21]
    MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [22]
    QI W M, LI P W, GAO M, et al. Mineral pressure gauge based on lattice stability and plasmonic enhancement of cobalt titanate under high pressure [J]. Physical Review B, 2023, 107(8): 085429. doi: 10.1103/PhysRevB.107.085429
    [23]
    QI W M, XIE C H, HUSHUR A, et al. Pressure-induced successive phase transitions and Fano resonance engineering in lead-free piezoceramics KNbO3 [J]. Applied Physics Letters, 2023, 122(23): 232901. doi: 10.1063/5.0143105
    [24]
    HU K G, ZHOU Z M, WEI Y W, et al. Bond ordering and phase transitions in Na2IrO3 under high pressure [J]. Physical Review B, 2018, 98(10): 100103(R).
    [25]
    DEMAREST JR H H, CASSELL C R, JAMIESON J C. The high pressure phase transitions in KF and RbF [J]. Journal of Physics and Chemistry of Solids, 1978, 39(11): 1211–1215. doi: 10.1016/0022-3697(78)90099-9
    [26]
    LOUIS C N, IYAKUTTI K. Electronic band structure and metallization of KI and RbI under high pressure [J]. Physica Status Solidi (B), 2002, 233(2): 339–350. doi: 10.1002/1521-3951(200209)233:2<339::AID-PSSB339>3.0.CO;2-6
    [27]
    TURNEAURE S J, GUPTA Y M, RIGG P. Shock induced phase change in KCl single crystals: orientation relations between the B1 and B2 lattices [J]. Journal of Applied Physics, 2009, 105(1): 013544. doi: 10.1063/1.3065522
    [28]
    KAPOOR S, GOUR A, SINGH S. Structural and elastic properties of KBr at high pressure and high temperature [J]. Phase Transitions, 2017, 90(10): 955–963. doi: 10.1080/01411594.2017.1292515
    [29]
    WANG H Y, HU Q K, LI C Y, et al. Phase transition, elastic, and thermodynamic properties of NaF under high pressure [J]. Phase Transitions, 2012, 85(5): 409–418. doi: 10.1080/01411594.2011.635521
    [30]
    HEINZ D L, JEANLOZ R. Compression of the B2 high-pressure phase of NaCl [J]. Physical Review B, 1984, 30(10): 6045–6050. doi: 10.1103/PhysRevB.30.6045
    [31]
    LÉGER J M, HAINES J, DANNEELS C, et al. The TlI-type structure of the high-pressure phase of NaBr and NaI: pressure-volume behaviour to 40 GPa [J]. Journal of Physics: Condensed Matter, 1998, 10(19): 4201–4210. doi: 10.1088/0953-8984/10/19/008
    [32]
    ZHAO Z S, ZHOU X F, WANG L M, et al. Universal phase transitions of B1-structured stoichiometric transition metal carbides [J]. Inorganic Chemistry, 2011, 50(19): 9266–9272. doi: 10.1021/ic200356x
    [33]
    RAO B S, SANYAL S P. Structural and elastic properties of sodium halides at high pressure [J]. Physical Review B, 1990, 42(3): 1810–1816. doi: 10.1103/PhysRevB.42.1810
    [34]
    HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
    [35]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [36]
    PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1097. doi: 10.1103/RevModPhys.64.1045
    [37]
    SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [38]
    LANGRETH D C, PERDEW J P. Theory of nonuniform electronic systems. Ⅰ. analysis of the gradient approximation and a generalization that works [J]. Physical Review B, 1980, 21(12): 5469–5493. doi: 10.1103/PhysRevB.21.5469
    [39]
    XIE Y Q, TAO H J, PENG H J, et al. Atomic states, potential energies, volumes, stability and brittleness of ordered fcc TiAl2 type alloys [J]. Physica B: Condensed Matter, 2005, 366(1/2/3/4): 17–37. doi: 10.1016/j.physb.2005.04.041
    [40]
    MAZUREK A, SZELESZCZUK Ł, PISKLAK D M. Can we predict the pressure induced phase transition of urea? application of quantum molecular dynamics [J]. Molecules, 2020, 25(7): 1584. doi: 10.3390/molecules25071584
    [41]
    AMRANI B, BENMESSABIH T, TAHIRI M, et al. First principles study of structural, elastic, electronic and optical properties of CuCl, CuBr and CuI compounds under hydrostatic pressure [J]. Physica B: Condensed Matter, 2006, 381(1/2): 179–186. doi: 10.1016/j.physb.2006.01.447
    [42]
    SAOUD F S, PLENET J C, HENINI M. Band gap and partial density of states for ZnO: under high pressure [J]. Journal of Alloys and Compounds, 2015, 619: 812–819. doi: 10.1016/j.jallcom.2014.08.069
    [43]
    MESSAOUDI I S, ZAOUI A, FERHAT M. Band-gap and phonon distribution in alkali halides [J]. Physica Status Solidi (B), 2015, 252(3): 490–495. doi: 10.1002/pssb.201451268
    [44]
    LEONI S, BOULFELFEL S E, BABURIN I A. A walk on the chemical landscape: the role of B33 along the B1–B2 phase transition in RbF and NaBr [J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2011, 637(7/8): 864–869. doi: 10.1002/zaac.201100045
    [45]
    DOLL K, STOLL H. Ground-state properties of heavy alkali halides [J]. Physical Review B, 1998, 57(8): 4327–4331. doi: 10.1103/PhysRevB.57.4327
    [46]
    BELAMEIRI N, TEBBOUNE A, MOKADDEM A, et al. Comparative study on performance and physical properties of CsI, NaI, RbI, and KBr materials [J]. Canadian Journal of Physics, 2016, 94(12): 1378–1383. doi: 10.1139/cjp-2016-0372
    [47]
    SIDDIQUE M, RAHMAN A U, IQBAL A, et al. A systematic first-principles investigation of structural, electronic, magnetic, and thermoelectric properties of thorium monopnictides ThPn (Pn = N, P, As): a comparative analysis of theoretical predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+U methods [J]. International Journal of Thermophysics, 2019, 40(12): 104. doi: 10.1007/s10765-019-2572-7
    [48]
    ZHANG Y B, SUN J W, PERDEW J P, et al. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA [J]. Physical Review B, 2017, 96(3): 035143. doi: 10.1103/PhysRevB.96.035143
    [49]
    AHUJA R, ERIKSSON O, JOHANSSON B. Theoretical study of the high-pressure orthorhombic TlI-type phase in NaBr and NaI [J]. Physical Review B, 2001, 63(9): 092102. doi: 10.1103/PhysRevB.63.092102
    [50]
    MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [51]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349–354. doi: 10.1088/0370-1298/65/5/307
    [52]
    MAO P L, YU B, LIU Z, et al. Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: a first-principles calculation [J]. Computational Materials Science, 2014, 88: 61–70. doi: 10.1016/j.commatsci.2014.03.006
    [53]
    REUSS A. Berechnung der fliebgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49–58. doi: 10.1002/zamm.19290090104
    [54]
    PUGH S F. XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
    [55]
    HINUMA Y, PIZZI G, KUMAGAI Y, et al. Band structure diagram paths based on crystallography [J]. Computational Materials Science, 2017, 128: 140–184. doi: 10.1016/j.commatsci.2016.10.015
    [56]
    TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106
    [57]
    ZHANG C B, LI W D, ZHANG P, et al. Phase transition, elasticity, phonon spectra, and superconductive properties of equiatomic TiZr, TiHf, and ZrHf alloys at high pressure: ab initio calculations [J]. Computational Materials Science, 2020, 178: 109637. doi: 10.1016/j.commatsci.2020.109637
    [58]
    WANG B T, ZHANG P, LIU H Y, et al. First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium [J]. Journal of Applied Physics, 2011, 109(6): 063514. doi: 10.1063/1.3556753
    [59]
    MA H, ZHANG X D, LIU C, et al. Structural, elastic, anisotropic and thermodynamic properties of the caged intermetallics RETi2Al20 (RE = La, Ce, Gd and Ho): a first-principles study [J]. Solid State Sciences, 2019, 89: 121–129. doi: 10.1016/j.solidstatesciences.2018.12.023
    [60]
    ZHANG X D, HUANG W Y, MA H, et al. First-principles prediction of the physical properties of ThM2Al20 (M = Ti, V, Cr) intermetallics [J]. Solid State Communications, 2018, 284: 75–83. doi: 10.1016/j.ssc.2018.09.008
    [61]
    LASHGARI H, ABOLHASSANI M R, BOOCHANI A, et al. Ab initio study of electronic, magnetic, elastic and optical properties of full Heusler Co2MnSb [J]. Indian Journal of Physics, 2016, 90(8): 909–916. doi: 10.1007/s12648-015-0829-y
    [62]
    SHALMASHI K, KHOSRAVI H, BOOCHANI A, et al. Characterization of halide perovskite/titania interfaces as a function of the interlayer composition: a theoretical study [J]. Journal of Physics and Chemistry of Solids, 2020, 138: 109243. doi: 10.1016/j.jpcs.2019.109243
    [63]
    RIZWAN M, FARMAN M, AKGÜL A, et al. Variation in electronic and optical responses due to phase transformation of SrZrO3 from cubic to orthorhombic under high pressure: a computational insight [J]. Indian Journal of Physics, 2022, 96(4): 1–9. doi: 10.1007/s12648-021-02031-2
    [64]
    RUDYSH M Y, FEDORCHUK A O, BRIK M G, et al. Electronic, optical, and vibrational properties of an AgAlS2 crystal in a high-pressure phase [J]. Materials, 2023, 16(21): 7017. doi: 10.3390/ma16217017
    [65]
    SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 8828–8834. doi: 10.1103/PhysRevB.62.8828
    [66]
    HAO A M, YANG X C, ZHANG L X, et al. First-principles investigations on physical properties of NdN under high pressure [J]. Journal of Physics and Chemistry of Solids, 2013, 74(10): 1504–1508. doi: 10.1016/j.jpcs.2013.05.019
    [67]
    LI P, FAN W L, LI Y L, et al. First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride [J]. Inorganic Chemistry, 2010, 49(15): 6917–6924. doi: 10.1021/ic1004819
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(321) PDF downloads(42) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return