| Citation: | NIU Yining, WU Yue, WANG Tiangen, LI Gan. Anti-Explosion Performance of Composite Blast-Resistant Walls Containing an Aluminum Foam Energy-Absorbing Layer[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 104101. doi: 10.11858/gywlxb.20251027 |
| [1] |
陈沫衡, 张典堂, 钱坤, 等. 防爆墙材料与结构研究进展 [J]. 工程爆破, 2021, 27(5): 93–101. doi: 10.19931/j.EB.20200095
CHEN M H, ZHANG D T, QIAN K, et al. Research progress on materials and structures of explosion-proof walls [J]. Engineering Blasting, 2021, 27(5): 93–101. doi: 10.19931/j.EB.20200095
|
| [2] |
SMITH P D. Blast walls for structural protection against high explosive threats: a review [J]. International Journal of Protective Structures, 2010, 1(1): 67–84. doi: 10.1260/2041-4196.1.1.67
|
| [3] |
SOHN J M, KIM S J. Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions [J]. Latin American Journal of Solids and Structures, 2019, 16(2): e161. doi: 10.1590/1679-78255351
|
| [4] |
TAHA A K, GAO Z G, HUANG D H, et al. Numerical investigation of a new structural configuration of a concrete barrier wall under the effect of blast loads [J]. International Journal of Advanced Structural Engineering, 2019, 11(Suppl 1): 19–34. doi: 10.1007/s40091-019-00252-8
|
| [5] |
宗瑞卿. 新型护栏型结构防爆墙研究 [D]. 天津: 天津大学, 2016: 55–58.
ZONG R Q. Analysis of a new fence type blast wall for blast protection [D]. Tianjin: Tianjin University, 2016: 55–58.
|
| [6] |
ZHANG Y N, ZHANG S, HUANG L X, et al. Simulation study of crack extension in concrete blast walls under blast impacts [J]. Journal of Physics: Conference Series, 2024, 2755(1): 012015. doi: 10.1088/1742-6596/2755/1/012015
|
| [7] |
YANG G L, HUANG W J, FENG S. Antiexplosion performance of engineered cementitious composite explosion-proof wall [J]. Advances in Materials Science and Engineering, 2020, 2020: 1921960. doi: 10.1155/2020/1921960
|
| [8] |
张雪梅, 顾文彬, 谢兴博, 等. 倾斜式防爆墙抗爆性能有限元数值分析与实验验证 [J]. 兵器装备工程学报, 2024, 45(7): 65–74. doi: 10.11809/bqzbgcxb2024.07.009
ZHANG X M, GU W B, XIE X B, et al. Finite element numerical analysis and experimental verification of anti-explosion performance of inclined explosion-proof wall [J]. Journal of Ordnance Equipment Engineering, 2024, 45(7): 65–74. doi: 10.11809/bqzbgcxb2024.07.009
|
| [9] |
张培文, 李鑫, 王志华, 等. 爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响 [J]. 高压物理学报, 2013, 27(5): 699–703. doi: 10.11858/gywlxb.2013.05.007
ZHANG P W, LI X, WANG Z H, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 699–703. doi: 10.11858/gywlxb.2013.05.007
|
| [10] |
MUBAROK M A H, PRABOWO A R, MUTTAQIE T, et al. Dynamic structural assessment of blast wall designs on military-based vehicle using explicit finite element approach [J]. Mathematical Problems in Engineering, 2022, 2022(1): 5883404. doi: 10.1155/2022/5883404
|
| [11] |
田立智, 宜晨虹, 汤铁钢, 等. 爆炸加载下蜂窝夹芯板和泡沫夹芯板变形行为实验研究 [J]. 爆破, 2024, 41(3): 232–239, 260. doi: 10.3963/j.issn.1001-487X.2024.03.027
TIAN L Z, YI C H, TANG T G, et al. Experimental study on deformation behavior of honeycomb sandwich panel and foam sandwich panel under explosion loading [J]. Blasting, 2024, 41(3): 232–239, 260. doi: 10.3963/j.issn.1001-487X.2024.03.027
|
| [12] |
吕永琪, 游晓红, 王录才. 泡沫铝夹芯板弯曲行为的仿真模拟 [J]. 金属功能材料, 2024, 31(3): 74–79. doi: 10.13228/j.boyuan.issn1005-8192.20240009
LYU Y Q, YOU X H, WANG L C. Simulation of bending behavior of aluminum foam sandwich panel [J]. Metallic Functional Materials, 2024, 31(3): 74–79. doi: 10.13228/j.boyuan.issn1005-8192.20240009
|
| [13] |
张文宽. 基于ANSYS/LS-DYNA的钢筋混凝土墙防爆性能数值研究 [D]. 湘潭: 湘潭大学, 2018: 44–49.
ZHANG W K. Numerical study on explosion-proof performance of reinforced concrete explosion-proof wall based on ANSYS/LS-DYNA [D]. Xiangtan: Xiangtan University, 2018: 44–49.
|
| [14] |
陈海洋. 拼装式防爆墙抗破片侵彻性能研究 [D]. 绵阳: 西南科技大学, 2023: 62–65.
CHEN H Y. Research on the performance of penetration resistance for assembled explosion-proof wall under fragment impact [D]. Mianyang: Southwest University of Science and Technology, 2023: 62–65.
|
| [15] |
顾文彬, 徐景林, 刘建青, 等. 多层泡沫铝夹芯板的抗爆性能 [J]. 含能材料, 2017, 25(3): 240–247. doi: 10.11943/j.issn.1006-9941.2017.03.011
GU W B, XU J L, LIU J Q, et al. Blast-resistance performances of multilayers aluminum foam sandwich panels [J]. Chinese Journal of Energetic Materials, 2017, 25(3): 240–247. doi: 10.11943/j.issn.1006-9941.2017.03.011
|
| [16] |
周炬, 苏金英. ANSYS WORKBENCH有限元分析实例详解 [M]. 北京: 人民邮电出版社, 2017: 382–385.
ZHOU J, SU J Y. ANSYS WORKBENCH finite element analysis examples in detail [M]. Beijing: Posts & Telecommunications Press, 2017: 382–385.
|
| [17] |
米双山, 刘东升, 徐亚卿. 基于流固耦合方法的爆炸仿真分析 [J]. 兵工自动化, 2008, 27(3): 33–35. doi: 10.3969/j.issn.1006-1576.2008.03.013
MI S S, LIU D S, XU Y Q. Explosive simulation based on fluid-solid coupling method [J]. Ordnance Industry Automation, 2008, 27(3): 33–35. doi: 10.3969/j.issn.1006-1576.2008.03.013
|
| [18] |
梁国祥, 曹红松. 熔铸装药过程缩孔缩松的预测及工艺优化 [J]. 兵器材料科学与工程, 2014, 37(2): 47–50. doi: 10.14024/j.cnki.1004-244x.2014.02.028
LIANG G X, CAO H S. Prediction of shrinkage porosity and process optimization during explosive casting process [J]. Ordnance Material Science and Engineering, 2014, 37(2): 47–50. doi: 10.14024/j.cnki.1004-244x.2014.02.028
|
| [19] |
时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 196–199.
SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005: 196–199.
|
| [20] |
张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. doi: 10.11883/1001-1455(2002)03-0198-5
ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. doi: 10.11883/1001-1455(2002)03-0198-5
|
| [21] |
辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020: 31–293.
XIN C L, XUE Z Q, TU J, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020: 31–293.
|
| [22] |
王永刚. 泡沫铝动态力学性能与波传播特性研究 [D]. 宁波: 宁波大学, 2003: 47–48.
WANG Y G. Study of dynamic mechanical properties and wave propagation characteristics of aluminum foam [D]. Ningbo: Ningbo University, 2003: 47–48.
|
| [23] |
CAI S P, LIU J, ZHANG P, et al. Experimental study on failure mechanisms of sandwich panels with multi-layered aluminum foam/UHMWPE laminate core under combined blast and fragments loading [J]. Thin-Walled Structures, 2021, 159: 107227. doi: 10.1016/j.tws.2020.107227
|
| [24] |
张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析 [J]. 北京理工大学学报, 2022, 42(6): 557–566. doi: 10.15918/j.tbit1001-0645.2021.225
ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557–566. doi: 10.15918/j.tbit1001-0645.2021.225
|