| Citation: | ZHANG Rui, WANG Duojun, CAI Nao. Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026 |
| [1] |
TSUJI Y, NAKAJIMA J, HASEGAWA A. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: implications for water transportation in subduction zones [J]. Geophysical Research Letters, 2008, 35(14): L14308. doi: 10.1029/2008GL034461
|
| [2] |
WANG D J, WANG L B, ZHANG R, et al. Mantle wedge water contents estimated from ultrasonic laboratory measurements of olivine-antigorite aggregates [J]. Geophysical Research Letters, 2022, 49(10): e2022GL098226. doi: 10.1029/2022GL098226
|
| [3] |
CHEN P, WANG D J, CAI N, et al. Anomalous sound velocities of talc at high pressure and implications for estimating water content in mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(11): e2023JB027309. doi: 10.1029/2023JB027309
|
| [4] |
HACKER B R, ABERS G A, PEACOCK S M. Subduction factory 1. theoretical mineralogy, densities, seismic wave speeds, and H2O contents [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 10. doi: 10.1029/2001JB001127
|
| [5] |
BEZACIER L, REYNARD B, CARDON H, et al. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(2): 527–535. doi: 10.1002/jgrb.50076
|
| [6] |
WANG D J, LIU T, CHEN T, et al. Anomalous sound velocities of antigorite at high pressure and implications for detecting serpentinization at mantle wedges [J]. Geophysical Research Letters, 2019, 46(10): 5153–5160. doi: 10.1029/2019GL082287
|
| [7] |
CHRISTENSEN N I. Ophiolites, seismic velocities and oceanic crustal structure [J]. Tectonophysics, 1978, 47(1/2): 131–157. doi: 10.1016/0040-1951(78)90155-5
|
| [8] |
JI S C, LI A W, WANG Q, et al. Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3): 1015–1037. doi: 10.1002/jgrb.50110
|
| [9] |
WATANABE T, KASAMI H, OHSHIMA S. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa [J]. Earth, Planets and Space, 2007, 59(4): 233–244. doi: 10.1186/BF03353100
|
| [10] |
WALTER M J, THOMSON A R, WANG W, et al. The stability of hydrous silicates in Earthʼs lower mantle: experimental constraints from the systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O [J]. Chemical Geology, 2015, 418: 16–29. doi: 10.1016/j.chemgeo.2015.05.001
|
| [11] |
FEI Y W, MAO H K. Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 11875–11884. doi: 10.1029/93JB00701
|
| [12] |
CATTI M, FERRARIS G, HULL S, et al. Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study [J]. Physics and Chemistry of Minerals, 1995, 22(3): 200–206. doi: 10.1007/BF00202300
|
| [13] |
DUFFY T S, ZHA C S, DOWNS R T, et al. Elasticity of forsterite to 16 GPa and the composition of the upper mantle [J]. Nature, 1995, 378(6553): 170–173. doi: 10.1038/378170a0
|
| [14] |
XIA X, WEIDNER D J, ZHAO H. Equation of state of brucite; single-crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement [J]. American Mineralogist, 1998, 83(1/2): 68–74. doi: 10.2138/am-1998-1-207
|
| [15] |
NAGAI T, HATTORI T, YAMANAKA T. Compression mechanism of brucite: an investigation by structural refinement under pressure [J]. American Mineralogist, 2000, 85(5/6): 760–764. doi: 10.2138/am-2000-5-615
|
| [16] |
FUKUI H, OHTAKA O, SUZUKI T, et al. Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy [J]. Physics and Chemistry of Minerals, 2003, 30(9): 511–516. doi: 10.1007/s00269-003-0353-z
|
| [17] |
SUN N Y, LI X Y, LI L, et al. Stability and physical properties of brucite at high pressures and temperatures: implication for Earth’s deep water cycle [J]. Geoscience Frontiers, 2025, 16(1): 101940. doi: 10.1016/j.gsf.2024.101940
|
| [18] |
JIANG F M, SPEZIALE S, DUFFY T S. Single-crystal elasticity of brucite, Mg(OH)2, to 15 GPa by Brillouin scattering [J]. American Mineralogist, 2006, 91(11/12): 1893–1900. doi: 10.2138/am.2006.2215
|
| [19] |
ZHANG J K, WANG D J, CAI N, et al. Elastic properties of amphibole at high pressure: a new explanation of the low velocities anomaly in the mantle wedges [J]. Tectonophysics, 2023, 865: 230044. doi: 10.1016/J.TECTO.2023.230044
|
| [20] |
ZHANG R, WANG D J, CAI N, et al. Sound velocity of eclogite at high pressures and implications for detecting eclogitization in subduction zones [J]. GSA Bulletin, 2024, 136(5/6): 2019–2028. doi: 10.1130/B37065.1
|
| [21] |
LI B S, CHEN K, KUNG J, et al. Sound velocity measurement using transfer function method [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11337. doi: 10.1088/0953-8984/14/44/478
|
| [22] |
LI B S, ZHANG J Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle [J]. Physics of the Earth and Planetary Interiors, 2005, 151(1/2): 143–154. doi: 10.1016/j.pepi.2005.02.004
|
| [23] |
WANG X B, CHEN T, QI X T, et al. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus [J]. Journal of Applied Physics, 2015, 118(6): 065901. doi: 10.1063/1.4928147
|
| [24] |
CAI N, WANG D J. Sound velocity of (Mg0.91Fe0.09)2SiO4 wadsleyite and its implications to water distribution in mantle transition zone [J]. Geophysical Research Letters, 2022, 49(22): e2022GL100302. doi: 10.1029/2022GL100302
|
| [25] |
COOK R K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements [J]. The Journal of the Acoustical Society of America, 1957, 29(4): 445–449. doi: 10.1121/1.1908922
|
| [26] |
LI B S, LIEBERMANN R C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 135–153. doi: 10.1016/j.pepi.2014.05.006
|
| [27] |
DAVIES G F, DZIEWONSKI A M. Homogeneity and constitution of the Earth’s lower mantle and outer core [J]. Physics of the Earth and Planetary Interiors, 1975, 10(4): 336–343. doi: 10.1016/0031-9201(75)90060-6
|
| [28] |
PEACOCK S M, WANG K L. On the stability of talc in subduction zones: a possible control on the maximum depth of decoupling between the subducting plate and mantle wedge [J]. Geophysical Research Letters, 2021, 48(17): e2021GL094889. doi: 10.1029/2021GL094889
|
| [29] |
MOOKHERJEE M, MAINPRICE D. Unusually large shear wave anisotropy for chlorite in subduction zone settings [J]. Geophysical Research Letters, 2014, 41(5): 1506–1513. doi: 10.1002/2014GL059334
|
| [30] |
ZHANG J S, BASS J D. Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle [J]. Geophysical Research Letters, 2016, 43(18): 9611–9618. doi: 10.1002/2016GL069949
|
| [31] |
KUNG J, LI B S, UCHIDA T, et al. In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure [J]. Physics of the Earth and Planetary Interiors, 2004, 147(1): 27–44. doi: 10.1016/j.pepi.2004.05.008
|
| [32] |
PEACOCK S M, BOSTOCK M G. Serpentinization of the forearc mantle wedge in subduction zones: revisiting Roy D. Hyndman’s seminal contributions 25 years later [J]. Canadian Journal of Earth Sciences, 2025, 62(4): 758–771. doi: 10.1139/cjes-2024-0082
|
| [33] |
CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524–541. doi: 10.1016/j.jpgl.2005.04.033
|
| [34] |
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
|
| [35] |
ABERS G A, HACKER B R. A MATLAB toolbox and excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 616–624. doi: 10.1002/2015GC006171
|
| [36] |
ZHAO Y S, VON DREELE R B, SHANKLAND T J, et al. Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction [J]. Geophysical Research Letters, 1997, 24(1): 5–8. doi: 10.1029/96GL03769
|
| [37] |
SHINMEI T, TOMIOKA N, FUJINO K, et al. In situ X-ray diffraction study of enstatite up to 12 GPa and 1 473 K and equations of state [J]. American Mineralogist, 1999, 84(10): 1588–1594. doi: 10.2138/am-1999-1012
|
| [38] |
PAWLEY A R, CLARK S M, CHINNERY N J. Equation of state measurements of chlorite, pyrophyllite, and talc [J]. American Mineralogist, 2002, 87(8/9): 1172–1182. doi: 10.2138/am-2002-8-916
|
| [39] |
LIU W, KUNG J, LI B S. Elasticity of San Carlos olivine to 8 GPa and 1 073 K [J]. Geophysical Research Letters, 2005, 32(16): L16301. doi: 10.1029/2005GL023453
|
| [40] |
ISAAK D G, OHNO I, LEE P C. The elastic constants of monoclinic single-crystal chrome-diopside to 1 300 K [J]. Physics and Chemistry of Minerals, 2006, 32(10): 691–699. doi: 10.1007/s00269-005-0047-9
|
| [41] |
ZHOU W Y, HAO M, ZHANG D Z, et al. High p-T sound velocities of amphiboles: implications for low-velocity anomalies in metasomatized upper mantle [J]. Geophysical Research Letters, 2024, 51(5): e2023GL106583. doi: 10.1029/2023GL106583
|
| [42] |
ZHAO Y S, VON DREELE R B, ZHANG J Z, et al. Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside [J]. The Review of High Pressure Science and Technology, 1998, 7: 25–27. doi: 10.4131/jshpreview.7.25
|