Volume 39 Issue 10
Oct 2025
Turn off MathJax
Article Contents
ZHANG Rui, WANG Duojun, CAI Nao. Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026
Citation: ZHANG Rui, WANG Duojun, CAI Nao. Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100102. doi: 10.11858/gywlxb.20251026

Elastic Wave Velocity of Brucite and Its Implications for Water Cycling in Subduction Zones

doi: 10.11858/gywlxb.20251026
  • Received Date: 17 Feb 2025
  • Rev Recd Date: 20 Mar 2025
  • Accepted Date: 19 May 2025
  • Available Online: 22 Mar 2025
  • Issue Publish Date: 05 Oct 2025
  • Brucite, a key constituent mineral in hydrated peridotites within subduction zones, can occupy up to the volume fraction of 15% of these water-saturated rocks. Investigating the high-pressure elastic wave velocities of brucite is thus crucial for understanding the composition, seismic velocity structure, and deep-water cycling processes of hydrated peridotites in subduction zones. In this study, dense polycrystalline brucite was synthesized from Mg(OH)2 reagent under 4 GPa and 523 K for 2 h. The elastic wave velocities and moduli of brucite were measured up to 14 GPa using ultrasonic interferometry. The results demonstrate that the elastic wave velocities and moduli of brucite increase with increasing pressure. By integrating seismic tomography with mineral assemblage modeling, we constrained the water content in the low-velocity anomaly regions of the mantle wedge using the Voigt-Reuss-Hill (VRH) model. Our estimations indicate that the water mass fraction ranges from 3.0%–10.0% in low-velocity anomaly zones of the mantle wedge above the subducting slab at depths of 20–40 km, and 1.0%–3.0% within the subducting slab at depths of 60–80 km beneath northeastern Japan.

     

  • loading
  • [1]
    TSUJI Y, NAKAJIMA J, HASEGAWA A. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: implications for water transportation in subduction zones [J]. Geophysical Research Letters, 2008, 35(14): L14308. doi: 10.1029/2008GL034461
    [2]
    WANG D J, WANG L B, ZHANG R, et al. Mantle wedge water contents estimated from ultrasonic laboratory measurements of olivine-antigorite aggregates [J]. Geophysical Research Letters, 2022, 49(10): e2022GL098226. doi: 10.1029/2022GL098226
    [3]
    CHEN P, WANG D J, CAI N, et al. Anomalous sound velocities of talc at high pressure and implications for estimating water content in mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(11): e2023JB027309. doi: 10.1029/2023JB027309
    [4]
    HACKER B R, ABERS G A, PEACOCK S M. Subduction factory 1. theoretical mineralogy, densities, seismic wave speeds, and H2O contents [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 10. doi: 10.1029/2001JB001127
    [5]
    BEZACIER L, REYNARD B, CARDON H, et al. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(2): 527–535. doi: 10.1002/jgrb.50076
    [6]
    WANG D J, LIU T, CHEN T, et al. Anomalous sound velocities of antigorite at high pressure and implications for detecting serpentinization at mantle wedges [J]. Geophysical Research Letters, 2019, 46(10): 5153–5160. doi: 10.1029/2019GL082287
    [7]
    CHRISTENSEN N I. Ophiolites, seismic velocities and oceanic crustal structure [J]. Tectonophysics, 1978, 47(1/2): 131–157. doi: 10.1016/0040-1951(78)90155-5
    [8]
    JI S C, LI A W, WANG Q, et al. Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3): 1015–1037. doi: 10.1002/jgrb.50110
    [9]
    WATANABE T, KASAMI H, OHSHIMA S. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa [J]. Earth, Planets and Space, 2007, 59(4): 233–244. doi: 10.1186/BF03353100
    [10]
    WALTER M J, THOMSON A R, WANG W, et al. The stability of hydrous silicates in Earthʼs lower mantle: experimental constraints from the systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O [J]. Chemical Geology, 2015, 418: 16–29. doi: 10.1016/j.chemgeo.2015.05.001
    [11]
    FEI Y W, MAO H K. Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 11875–11884. doi: 10.1029/93JB00701
    [12]
    CATTI M, FERRARIS G, HULL S, et al. Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study [J]. Physics and Chemistry of Minerals, 1995, 22(3): 200–206. doi: 10.1007/BF00202300
    [13]
    DUFFY T S, ZHA C S, DOWNS R T, et al. Elasticity of forsterite to 16 GPa and the composition of the upper mantle [J]. Nature, 1995, 378(6553): 170–173. doi: 10.1038/378170a0
    [14]
    XIA X, WEIDNER D J, ZHAO H. Equation of state of brucite; single-crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement [J]. American Mineralogist, 1998, 83(1/2): 68–74. doi: 10.2138/am-1998-1-207
    [15]
    NAGAI T, HATTORI T, YAMANAKA T. Compression mechanism of brucite: an investigation by structural refinement under pressure [J]. American Mineralogist, 2000, 85(5/6): 760–764. doi: 10.2138/am-2000-5-615
    [16]
    FUKUI H, OHTAKA O, SUZUKI T, et al. Thermal expansion of Mg(OH)2 brucite under high pressure and pressure dependence of entropy [J]. Physics and Chemistry of Minerals, 2003, 30(9): 511–516. doi: 10.1007/s00269-003-0353-z
    [17]
    SUN N Y, LI X Y, LI L, et al. Stability and physical properties of brucite at high pressures and temperatures: implication for Earth’s deep water cycle [J]. Geoscience Frontiers, 2025, 16(1): 101940. doi: 10.1016/j.gsf.2024.101940
    [18]
    JIANG F M, SPEZIALE S, DUFFY T S. Single-crystal elasticity of brucite, Mg(OH)2, to 15 GPa by Brillouin scattering [J]. American Mineralogist, 2006, 91(11/12): 1893–1900. doi: 10.2138/am.2006.2215
    [19]
    ZHANG J K, WANG D J, CAI N, et al. Elastic properties of amphibole at high pressure: a new explanation of the low velocities anomaly in the mantle wedges [J]. Tectonophysics, 2023, 865: 230044. doi: 10.1016/J.TECTO.2023.230044
    [20]
    ZHANG R, WANG D J, CAI N, et al. Sound velocity of eclogite at high pressures and implications for detecting eclogitization in subduction zones [J]. GSA Bulletin, 2024, 136(5/6): 2019–2028. doi: 10.1130/B37065.1
    [21]
    LI B S, CHEN K, KUNG J, et al. Sound velocity measurement using transfer function method [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 11337. doi: 10.1088/0953-8984/14/44/478
    [22]
    LI B S, ZHANG J Z. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle [J]. Physics of the Earth and Planetary Interiors, 2005, 151(1/2): 143–154. doi: 10.1016/j.pepi.2005.02.004
    [23]
    WANG X B, CHEN T, QI X T, et al. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus [J]. Journal of Applied Physics, 2015, 118(6): 065901. doi: 10.1063/1.4928147
    [24]
    CAI N, WANG D J. Sound velocity of (Mg0.91Fe0.09)2SiO4 wadsleyite and its implications to water distribution in mantle transition zone [J]. Geophysical Research Letters, 2022, 49(22): e2022GL100302. doi: 10.1029/2022GL100302
    [25]
    COOK R K. Variation of elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements [J]. The Journal of the Acoustical Society of America, 1957, 29(4): 445–449. doi: 10.1121/1.1908922
    [26]
    LI B S, LIEBERMANN R C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry [J]. Physics of the Earth and Planetary Interiors, 2014, 233: 135–153. doi: 10.1016/j.pepi.2014.05.006
    [27]
    DAVIES G F, DZIEWONSKI A M. Homogeneity and constitution of the Earth’s lower mantle and outer core [J]. Physics of the Earth and Planetary Interiors, 1975, 10(4): 336–343. doi: 10.1016/0031-9201(75)90060-6
    [28]
    PEACOCK S M, WANG K L. On the stability of talc in subduction zones: a possible control on the maximum depth of decoupling between the subducting plate and mantle wedge [J]. Geophysical Research Letters, 2021, 48(17): e2021GL094889. doi: 10.1029/2021GL094889
    [29]
    MOOKHERJEE M, MAINPRICE D. Unusually large shear wave anisotropy for chlorite in subduction zone settings [J]. Geophysical Research Letters, 2014, 41(5): 1506–1513. doi: 10.1002/2014GL059334
    [30]
    ZHANG J S, BASS J D. Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle [J]. Geophysical Research Letters, 2016, 43(18): 9611–9618. doi: 10.1002/2016GL069949
    [31]
    KUNG J, LI B S, UCHIDA T, et al. In situ measurements of sound velocities and densities across the orthopyroxene→high-pressure clinopyroxene transition in MgSiO3 at high pressure [J]. Physics of the Earth and Planetary Interiors, 2004, 147(1): 27–44. doi: 10.1016/j.pepi.2004.05.008
    [32]
    PEACOCK S M, BOSTOCK M G. Serpentinization of the forearc mantle wedge in subduction zones: revisiting Roy D. Hyndman’s seminal contributions 25 years later [J]. Canadian Journal of Earth Sciences, 2025, 62(4): 758–771. doi: 10.1139/cjes-2024-0082
    [33]
    CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524–541. doi: 10.1016/j.jpgl.2005.04.033
    [34]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
    [35]
    ABERS G A, HACKER B R. A MATLAB toolbox and excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 616–624. doi: 10.1002/2015GC006171
    [36]
    ZHAO Y S, VON DREELE R B, SHANKLAND T J, et al. Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction [J]. Geophysical Research Letters, 1997, 24(1): 5–8. doi: 10.1029/96GL03769
    [37]
    SHINMEI T, TOMIOKA N, FUJINO K, et al. In situ X-ray diffraction study of enstatite up to 12 GPa and 1 473 K and equations of state [J]. American Mineralogist, 1999, 84(10): 1588–1594. doi: 10.2138/am-1999-1012
    [38]
    PAWLEY A R, CLARK S M, CHINNERY N J. Equation of state measurements of chlorite, pyrophyllite, and talc [J]. American Mineralogist, 2002, 87(8/9): 1172–1182. doi: 10.2138/am-2002-8-916
    [39]
    LIU W, KUNG J, LI B S. Elasticity of San Carlos olivine to 8 GPa and 1 073 K [J]. Geophysical Research Letters, 2005, 32(16): L16301. doi: 10.1029/2005GL023453
    [40]
    ISAAK D G, OHNO I, LEE P C. The elastic constants of monoclinic single-crystal chrome-diopside to 1 300 K [J]. Physics and Chemistry of Minerals, 2006, 32(10): 691–699. doi: 10.1007/s00269-005-0047-9
    [41]
    ZHOU W Y, HAO M, ZHANG D Z, et al. High p-T sound velocities of amphiboles: implications for low-velocity anomalies in metasomatized upper mantle [J]. Geophysical Research Letters, 2024, 51(5): e2023GL106583. doi: 10.1029/2023GL106583
    [42]
    ZHAO Y S, VON DREELE R B, ZHANG J Z, et al. Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside [J]. The Review of High Pressure Science and Technology, 1998, 7: 25–27. doi: 10.4131/jshpreview.7.25
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(580) PDF downloads(51) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return