Volume 39 Issue 5
May. 2025
Turn off MathJax
Article Contents
YANG Huanhuan, ZHANG Enlai, LI Xinzhu, ZOU Liyong. Interface Proximity Effect on the Evolution of a Shock-Accelerated Heavy Gas Cylinder[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 050101. doi: 10.11858/gywlxb.20251008
Citation: YANG Huanhuan, ZHANG Enlai, LI Xinzhu, ZOU Liyong. Interface Proximity Effect on the Evolution of a Shock-Accelerated Heavy Gas Cylinder[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 050101. doi: 10.11858/gywlxb.20251008

Interface Proximity Effect on the Evolution of a Shock-Accelerated Heavy Gas Cylinder

doi: 10.11858/gywlxb.20251008
  • Received Date: 10 Jan 2025
  • Rev Recd Date: 15 Feb 2025
  • Available Online: 06 Mar 2025
  • Issue Publish Date: 01 May 2025
  • To uncover the interface proximity effect arising from the interaction between shock wave and near-surface impurity and hole of material in practical applications, a simplified mechanism study on the influence of downstream planar heavy-light interfaces on the evolution of a shock-accelerated heavy gas cylinder was carried out through numerical simulation. The findings reveal that the diffracted and transmitted wave systems formed by the incident shock impacting the heavy gas cylinders successively interact with the downstream planar slow-fast interface, leading to the formation of wave systems that reflect back and forth between the gas cylinder and the downstream planar slow-fast interface. Significantly, these wave systems not only govern the evolution of the gas cylinder interface but also trigger the generation of jets at the downstream planar slow-fast interfaces. Under diverse interfacial spacing conditions, the type of reflected waves originating from the diffracted wave system outside the gas cylinder varies at the downstream interface, and the sequence of the reflected wave system and the focused wave system inside the gas cylinder interacting with the right pole of the gas cylinder is different. When the interfacial distance is narrow, the gas cylinder jet can permeate the gap fluid sandwiched between the gas cylinder and the downstream slow-fast interface and couple with the jet at the downstream planar slow-fast interface, which significantly promotes the evolution of the gas cylinder jet. As the interfacial distance increases, the jet coupling phenomenon progressively wanes, and the gas cylinder jet succumbs to the inhibitory effect of the vortex pair within the gas cylinder. With a further augmentation in interfacial distance, the gas cylinder jet will be promoted by the stretching effect of the reflected rarefaction wave system at the downstream interface. In addition, under different interface spacing conditions, the presence of a downstream planar slow-fast interface invariably augments the development of interfacial width, height, as well as circulation deposition.

     

  • loading
  • [1]
    ZHOU Y, SADLER J D, HURRICANE O A. Instabilities and mixing in inertial confinement fusion [J]. Annual Review of Fluid Mechanics, 2025, 57: 197–225. doi: 10.1146/ANNUREV-FLUID-022824-110008
    [2]
    BETTI R, HURRICANE O A. Inertial-confinement fusion with lasers [J]. Nature Physics, 2016, 12(5): 435–448. doi: 10.1038/nphys3736
    [3]
    BOKMAN G T, BIASIORI-POULANGES L, MEYER D W, et al. Scaling laws for bubble collapse driven by an impulsive shock wave [J]. Journal of Fluid Mechanics, 2023, 967: A33. doi: 10.1017/jfm.2023.514
    [4]
    REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets: progress and challenges [J]. Progress in Aerospace Sciences, 2019, 105: 40–59. doi: 10.1016/j.paerosci.2018.12.002
    [5]
    YANG H X, RADULESCU M I. Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2021, 923: A36. doi: 10.1017/jfm.2021.594
    [6]
    HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181: 41–76. doi: 10.1017/S0022112087002003
    [7]
    PICONE J M, BORIS J P. Vorticity generation by shock propagation through bubbles in a gas [J]. Journal of Fluid Mechanics, 1988, 189: 23–51. doi: 10.1017/S0022112088000904
    [8]
    LI D D, WANG G, GUAN B. On the circulation prediction of shock-accelerated elliptical heavy gas cylinders [J]. Physics of Fluids, 2019, 31(5): 056104. doi: 10.1063/1.5090370
    [9]
    BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al. Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics [J]. Journal of Fluid Mechanics, 2012, 696: 67–93. doi: 10.1017/jfm.2012.8
    [10]
    RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43: 117–140. doi: 10.1146/annurev-fluid-122109-160744
    [11]
    RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207
    [12]
    MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. doi: 10.1007/BF01015969
    [13]
    RUDINGER G, SOMERS L M. Behaviour of small regions of different gases carried in accelerated gas flows [J]. Journal of Fluid Mechanics, 1960, 7(2): 161–176. doi: 10.1017/S0022112060001419
    [14]
    邹立勇, 刘仓理, 庞勇, 等. 激波作用下SF6气泡界面演化和射流发展的数值模拟 [J]. 高压物理学报, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013

    ZOU L Y, LIU C L, PANG Y, et al. A numerical study on interface evolution and jet development of a shocked SF6 gas bubble [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 90–98. doi: 10.11858/gywlxb.2013.01.013
    [15]
    ZHANG D J, XU A G, SONG J H, et al. Specific-heat ratio effects on the interaction between shock wave and heavy-cylindrical bubble: based on discrete Boltzmann method [J]. Computers & Fluids, 2023, 265: 106021. doi: 10.1016/j.compfluid.2023.106021
    [16]
    朱跃进, 于蕾, 潘剑锋, 等. 激波冲击SF6重气泡引发射流的数值模拟 [J]. 爆炸与冲击, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135

    ZHU Y J, YU L, PAN J F, et al. Simulation on jet formation induced by interaction of shock wave with SF6 bubble [J]. Explosion and Shock Waves, 2018, 38(1): 50–59. doi: 10.11883/bzycj-2016-0135
    [17]
    ZHAI Z G, SI T, ZOU L Y, et al. Jet formation in shock-heavy gas bubble interaction [J]. Acta Mechanica Sinica, 2013, 29(1): 24–35. doi: 10.1007/s10409-013-0003-8
    [18]
    ZOU L Y, LIAO S F, LIU C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders [J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127
    [19]
    BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2010, 82(5): 056318. doi: 10.1103/PhysRevE.82.056318
    [20]
    LI P, BAI J S, WANG T, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 262–268. doi: 10.1007/s11433-009-0269-9
    [21]
    柏劲松, 王涛, 邹立勇, 等. 可压缩多介质粘性流体和湍流的大涡模拟 [J]. 爆炸与冲击, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07

    BAI J S, WANG T, ZOU L Y, et al. Large eddy simulation for the multi-viscosity-fluid and turbulence [J]. Explosion and Shock Waves, 2010, 30(3): 262–268. doi: 10.11883/1001-1455(2010)03-0262-07
    [22]
    ORLICZ G C, BALASUBRAMANIAN S, VOROBIEFF P, et al. Mixing transition in a shocked variable-density flow [J]. Physics of Fluids, 2015, 27(11): 114102. doi: 10.1063/1.4935183
    [23]
    ZOU L Y, ZHAI Z G, LIU J H, et al. Energy convergence effect and jet phenomenon of shock-heavy spherical bubble interaction [J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 124703.
    [24]
    GEORGIEVSKIY P Y, LEVIN V A, SUTYRIN O G. Interaction of a shock with elliptical gas bubbles [J]. Shock Waves, 2015, 25(4): 357–369. doi: 10.1007/s00193-015-0557-4
    [25]
    OU J F, DING J C, LUO X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction [J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5
    [26]
    FAN E, GUAN B, WEN C Y, et al. Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities [J]. Physics of Fluids, 2019, 31(2): 026103.
    [27]
    YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity [J]. Journal of Fluid Mechanics, 1994, 258: 217–244. doi: 10.1017/S0022112094003307
    [28]
    SAMTANEY R, ZABUSKY N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws [J]. Journal of Fluid Mechanics, 1994, 269: 45–78. doi: 10.1017/S0022112094001485
    [29]
    XU A G, ZHANG D J, GAN Y B. Advances in the kinetics of heat and mass transfer in near-continuous complex flows [J]. Frontiers of Physics, 2024, 19(4): 42500. doi: 10.1007/s11467-023-1353-8
    [30]
    廖深飞, 邹立勇, 刘金宏, 等. 激波两次冲击下重气柱Richtmyer-Meshkov不稳定性的粒子图像测速研究 [J]. 高压物理学报, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005

    LIAO S F, ZOU L Y, LIU J H, et al. A particle image velocimetry study of Richtmyer-Meshkov instability in a twice-shocked heavy gas cylinder [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 463–470. doi: 10.11858/gywlxb.2016.06.005
    [31]
    ZOU L Y, HUANG W B, LIU C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders [J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439
    [32]
    FENG L L, XU J R, ZHAI Z G, et al. Evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459
    [33]
    郑纯, 何勇, 张焕好, 等. 激波诱导环形SF6气柱演化的机理 [J]. 爆炸与冲击, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226

    ZHENG C, HE Y, ZHANG H H, et al. On the evolution mechanism of the shock-accelerated annular SF6 cylinder [J]. Explosion and Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
    [34]
    朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. doi: 10.6052/1000-0992-2010-4-J2009-144
    [35]
    LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
    [36]
    FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
    [37]
    SUN M, TAKAYAMA K. Conservative smoothing on an adaptive quadrilateral grid [J]. Journal of Computational Physics, 1999, 150(1): 143–180. doi: 10.1006/jcph.1998.6167
    [38]
    TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin: Springer, 2009.
    [39]
    ZHANG E L, LIAO S F, ZOU L Y, et al. Refraction of a triple-shock configuration at planar fast-slow gas interfaces [J]. Journal of Fluid Mechanics, 2024, 984: A49. doi: 10.1017/jfm.2024.245
    [40]
    张恩来, 廖深飞, 邹立勇, 等. 马赫反射波系冲击诱导平面界面失稳的数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2024, 54(10): 104704.

    ZHANG E L, LIAO S F, ZOU L Y, et al. Numerical simulation of the instability of a planar interface subjected to a Mach reflection wave configuration [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(10): 104704.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(746) PDF downloads(64) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return