Volume 39 Issue 5
May. 2025
Turn off MathJax
Article Contents
CHEN Yulan, PEI Hongbo, GUO Wencan, LIU Fusheng, GAN Yundan, LI Xinghan. Study and Preliminary Application of the Thermochemical Equation of State of C3N4[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 052101. doi: 10.11858/gywlxb.20251006
Citation: CHEN Yulan, PEI Hongbo, GUO Wencan, LIU Fusheng, GAN Yundan, LI Xinghan. Study and Preliminary Application of the Thermochemical Equation of State of C3N4[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 052101. doi: 10.11858/gywlxb.20251006

Study and Preliminary Application of the Thermochemical Equation of State of C3N4

doi: 10.11858/gywlxb.20251006
  • Received Date: 03 Jan 2025
  • Rev Recd Date: 27 Mar 2025
  • Available Online: 11 Mar 2025
  • Issue Publish Date: 01 May 2025
  • C3N4 has a wide range of applications in the synthesis of superhard materials and photocatalysis materials, but its phase transitions and physical behaviors under high pressure and high temperature conditions are not fully understood. Therefore, it is necessary to study its thermochemical equation of state. In this paper, we propose a novel, high-precision and low-cost method for quantitatively determining the equation of state of C3N4, based on decomposition phase boundary and compression line at room temperature. We constructs the equation of state for two phases of C3N4, and the corresponding physical quantities match well with first-principles calculations and experimental values, proving the reliability of the equation of state. Based on the equation of state of C3N4, we make a preliminary judgment on the phase state of the controversial points. Furthermore, this study attempts to incorporate the equation of state of C3N4 into the research on the detonation mechanism of novel nitrogen-rich explosives. It significantly reduces the long-standing errors between the calculated values and experimental values of the detonation parameters of the explosives, and provides a new reference direction for the research on the detonation parameter calculations of new explosives.

     

  • loading
  • [1]
    WANG Y G, LIU F S, LIU Q J, et al. Recover of C3N4 nanoparticles under high-pressure by shock wave loading [J]. Ceramics International, 2018, 44(16): 19290–19294. doi: 10.1016/j.ceramint.2018.07.155
    [2]
    LANIEL D, TRYBEL F, ZHOU W J, et al. High-pressure synthesis of oP28-C3N4 recoverable to ambient conditions [J]. Advanced Functional Materials, 2025, 35(11): 2416892. doi: 10.1002/ADFM.202416892
    [3]
    SONG X L, CHEN L, GAO L J, et al. Engineering g-C3N4 based materials for advanced photocatalysis: recent advances [J]. Green Energy & Environment, 2024, 9(2): 166–197. doi: 10.1016/j.gee.2022.12.005
    [4]
    MUHMOOD T, AHMAD I, HAIDER Z, et al. Graphene-like graphitic carbon nitride (g-C3N4) as a semiconductor photocatalyst: properties, classification, and defects engineering approaches [J]. Materials Today Sustainability, 2024, 25: 100633. doi: 10.1016/j.mtsust.2023.100633
    [5]
    YU X N, NG S F, PUTRI L K, et al. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis [J]. Small, 2021, 17(48): 2006851. doi: 10.1002/smll.202006851
    [6]
    KLAPÖTKE T M. TKX-50: a highly promising secondary explosive [M]//TRACHE D, BENALIOUCHE F, MEKKI A. Materials Research and Applications: Select Papers from JCH8–2019. Singapore: Springer, 2021: 1–91.
    [7]
    WANG X H, HAO G Z, XIAO L, et al. Review on the thermal decomposition of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) [J]. Thermochimica Acta, 2023, 719: 179393. doi: 10.1016/J.TCA.2022.179393
    [8]
    ZHAO C D, CHI Y, PENG Q, et al. A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products [J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6600–6605. doi: 10.1039/C8CP07487A
    [9]
    REN X, HE R N, WANG X H, et al. A comprehensive experimental and theoretical study of thermal response mechanisms of TKX-50 and HMX [J]. Fuel, 2024, 375: 132623. doi: 10.1016/j.fuel.2024.132623
    [10]
    HAN Y H, LUO J F, GAO C X, et al. Phase transition of graphitic-C3N4 under high pressure by in situ resistance measurement in a diamond anvil cell [J]. Chinese Physics Letters, 2005, 22(6): 1347–1349. doi: 10.1088/0256-307X/22/6/014
    [11]
    李雪飞, 张剑, 刘伟, 等. 氮化碳的高压同步辐射研究 [J]. 高压物理学报, 2009, 23(1): 71–74. doi: 10.11858/gywlxb.2009.01.012

    LI X F, ZHANG J, LIU W, et al. Synchrotron radiation X-ray diffraction of carbon nitride under high pressure [J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 71–74. doi: 10.11858/gywlxb.2009.01.012
    [12]
    李雪飞, 马艳梅, 沈龙海, 等. 石墨相C3N4压致结构相变研究 [J]. 高压物理学报, 2010, 24(1): 67–70. doi: 10.11858/gywlxb.2010.01.012

    LI X F, MA Y M, SHEN L H, et al. Study on the pressure-induced phase transition of g-C3N4 [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 67–70. doi: 10.11858/gywlxb.2010.01.012
    [13]
    GAO X, YIN H, CHEN P W, et al. Shock-induced phase transition of g-C3N4 to a new C3N4 phase [J]. Journal of Applied Physics, 2019, 126(15): 155901. doi: 10.1063/1.5111710
    [14]
    马海云, 刘福生, 李永宏, 等. 强冲击压缩条件下g-C3N4β-C3N4直接转化 [J]. 高压物理学报, 2012, 26(3): 319–324. doi: 10.11858/gywlxb.2012.03.012

    MA H Y, LIU F S, LI Y H, et al. Strong shock-compression of g-C3N4 precursor for direct synthesis of β-C3N4 [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 319–324. doi: 10.11858/gywlxb.2012.03.012
    [15]
    TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53–55. doi: 10.1126/science.271.5245.53
    [16]
    LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science, 1989, 245(4920): 841–842. doi: 10.1126/science.245.4920.841
    [17]
    KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K [J]. Diamond and Related Materials, 2013, 39: 1–7. doi: 10.1016/j.diamond.2013.07.006
    [18]
    MING L C, ZININ P, MENG Y, et al. A cubic phase of C3N4 synthesized in the diamond-anvil cell [J]. Journal of Applied Physics, 2006, 99(3): 033520. doi: 10.1063/1.2168567
    [19]
    FANG L M, OHFUJI H, SHINMEI T, et al. Experimental study on the stability of graphitic C3N4 under high pressure and high temperature [J]. Diamond and Related Materials, 2011, 20(5/6): 819–825. doi: 10.1016/j.diamond.2011.03.034
    [20]
    邹广田, 李雪飞, 杨大鹏, 等. 石墨相C3N4的高温高压研究 [J]. 原子与分子物理学报, 2009, 26(4): 705–707. doi: 10.3969/j.issn.1000-0364.2009.04.024

    ZOU G T, LI X F, YANG D P, et al. Study on the pressure-induced phase transition of g-C3N4 [J]. Journal of Atomic and Molecular Physics, 2009, 26(4): 705–707. doi: 10.3969/j.issn.1000-0364.2009.04.024
    [21]
    LANIEL D, TRYBEL F, ASLANDUKOV A, et al. Synthesis of ultra-incompressible and recoverable carbon nitrides featuring CN4 tetrahedra [J]. Advanced Materials, 2024, 36(3): 2308030. doi: 10.1002/adma.202308030
    [22]
    MANYALI G S, WARMBIER R, QUANDT A, et al. Ab initio study of elastic properties of super hard and graphitic structures of C3N4 [J]. Computational Materials Science, 2013, 69: 299–303. doi: 10.1016/j.commatsci.2012.11.039
    [23]
    LANZILOTTO V, SILVA J L, ZHANG T, et al. Spectroscopic fingerprints of intermolecular H-bonding interactions in carbon nitride model compounds [J]. Chemistry–A European Journal, 2018, 24(53): 14198–14206. doi: 10.1002/chem.201802435
    [24]
    UGOLOTTI A, DI VALENTIN C. Ab-initio spectroscopic characterization of melem-based graphitic carbon nitride polymorphs [J]. Nanomaterials, 2021, 11(7): 1863. doi: 10.3390/nano11071863
    [25]
    阮林伟. g-C3N4光催化材料的第一性原理研究 [D]. 合肥: 安徽大学, 2015: 42–56.

    RUAN L W. First-principles study of g-C3N4 photocatalytic materials [D]. Hefei: Anhui University, 2015: 42–56.
    [26]
    ZHAO Y R, ZHANG H R, ZHANG G T, et al. First-principles investigation on elastic and thermodynamic properties of Pnnm-CN under high pressure [J]. AIP Advances, 2016, 6(12): 125040. doi: 10.1063/1.4972775
    [27]
    RUAN L W, ZHU Y J, QIU L G, et al. First principles calculations of the pressure affection to g-C3N4 [J]. Computational Materials Science, 2014, 91: 258–265. doi: 10.1016/j.commatsci.2014.04.058
    [28]
    PRIBYLOV A A, POSTNIKOV E B. Thermodynamic curvature and the thermal expansion isolines [J]. Journal of Molecular Liquids, 2021, 335: 115994. doi: 10.1016/j.molliq.2021.115994
    [29]
    RIBEIRO M, HENRIQUES T, CASTRO L, et al. The entropy universe [J]. Entropy, 2021, 23(2): 222.
    [30]
    BLANCO M A, FRANCISCO E, LUAÑA V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57–72. doi: 10.1016/j.comphy.2003.12.001
    [31]
    LUO Y F, LI M K, YUAN H M, et al. Predicting lattice thermal conductivity via machine learning: a mini review [J]. NPJ Computational Materials, 2023, 9(1): 4. doi: 10.1038/s41524-023-00964-2
    [32]
    XIAN Y T, XIANG S K, LIU L, et al. Accurate equation of state of rhenium as pressure scale up to 130 GPa and 3200 K [J]. AIP Advances, 2022, 12(5): 055313. doi: 10.1063/5.0089292
    [33]
    LUO Y, XIANG S K, LI J, et al. Equation of state of MgO up to 345 GPa and 8500 K [J]. Physical Review B, 2023, 107(13): 134116. doi: 10.1103/PhysRevB.107.134116
    [34]
    KRUKOWSKI S, STRĄK P. Equation of state of nitrogen (N2) at high pressures and high temperatures: molecular dynamics simulation [J]. The Journal of Chemical Physics, 2006, 124(13): 134501. doi: 10.1063/1.2185096
    [35]
    杨金文, 施尚春, 李巧燕, 等. 高温高密度液氦冲击压缩特性理论研究 [J]. 爆炸与冲击, 2007, 27(6): 557–561. doi: 10.11883/1001-1455(2007)06-0557-05

    YANG J W, SHI S C, LI Q Y, et al. Theoretical research on shock compression properties of liquid helium at high temperature and density [J]. Explosion and Shock Waves, 2007, 27(6): 557–561. doi: 10.11883/1001-1455(2007)06-0557-05
    [36]
    赵艳红. 基于统计物理和化学平衡的爆轰产物物态方程 [D]. 绵阳: 中国工程物理研究院, 2015: 21–46.

    ZHAO Y H. The equation of state of detonation products based on statistical physics and chemical equilibrium [D]. Mianyang: China Academy of Engineering Physics, 2015: 21–46.
    [37]
    FRIED L E, HOWARD W M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram [J]. Physical Review B, 2000, 61(13): 8734–8743. doi: 10.1103/PhysRevB.61.8734
    [38]
    JAWORSKI Z, ZAKRZEWSKA B, PIANKO-OPRYCH P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes [J]. Reviews in Chemical Engineering, 2017, 33(3): 217–235. doi: 10.1515/revce-2016-0022
    [39]
    王中友, 李星翰, 甘云丹, 等. 爆热弹中产物组分演化的计算研究 [J]. 火炸药学报, 2022, 45(2): 229–242. doi: 10.14077/j.issn.1007-7812.202112008

    WANG Z Y, LI X H, GAN Y D, et al. Study on thermodynamic evolution of detonation products in the detonation bomb test [J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 229–242. doi: 10.14077/j.issn.1007-7812.202112008
    [40]
    LI X H, YI Z C, LIU Q J, et al. Research of detonation products of RDX/Al from the perspective of composition [J]. Defence Technology, 2023, 24: 31–45. doi: 10.1016/j.dt.2022.11.016
    [41]
    KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future [J]. Multimedia Tools and Applications, 2021, 80(5): 8091–8126. doi: 10.1007/s11042-020-10139-6
    [42]
    WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview [J]. Soft Computing, 2018, 22(2): 387–408. doi: 10.1007/s00500-016-2474-6
    [43]
    CANG Y P, LIAN S B, YANG H M, et al. Predicting physical properties of tetragonal, monoclinic and orthorhombic M3N4 (M= C, Si, Sn) polymorphs via first-principles calculations [J]. Chinese Physics Letters, 2016, 33(6): 066301. doi: 10.1088/0256-307X/33/6/066301
    [44]
    FISCHER N, FISCHER D, KLAPÖTKE T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418–20422. doi: 10.1039/C2JM33646D
    [45]
    SUCESKA M, TUMARA B S, DOBRILOVIC M, et al. Estimation of detonation front curvature radius by empirical equations [J]. Journal of Energetic Materials, 2024, 42(2): 169–186. doi: 10.1080/07370652.2022.2052207
    [46]
    SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2771–2779. doi: 10.1016/j.proci.2016.07.122
    [47]
    杨舒棋, 张旭, 彭文杨, 等. 钝感炸药冲击起爆反应过程的PDV技术 [J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856

    YANG S Q, ZHANG X, PENG W Y, et al. PDV technology of shock initiation reaction process of insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
    [48]
    GOTTFRIED J L, KLAPÖTKE T M, WITKOWSKI T G. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353–359. doi: 10.1002/prep.201600257
    [49]
    刘佳辉, 范桂娟, 卢校军, 等. TKX-50基混合炸药的爆轰及安全性能 [J]. 含能材料, 2019, 27(11): 902–907. doi: 10.11943/CJEM2019052

    LIU J H, FAN G J, LU X J, et al. Detonation and safety performance of TKX-50 based PBX [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 902–907. doi: 10.11943/CJEM2019052
    [50]
    TAN K Y, HAN Y, LIU J H, et al. Detonation reaction zone and acceleration ability of a TKX-50 based polymer bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(1): e202100367. doi: 10.1002/PREP.202100367
    [51]
    KESHAVARZ M, ABADI Y H, ESMAEILPOUR K, et al. Novel high-nitrogen content energetic compounds with high detonation and combustion performance for use in plastic bonded explosives (PBXs) and composite solid propellants [J]. Central European Journal of Energetic Materials, 2018, 15(2): 364–375. doi: 10.22211/cejem/78091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(582) PDF downloads(50) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return