Volume 39 Issue 5
May. 2025
Turn off MathJax
Article Contents
XU Yang, LI Mian, LI Yuanbing, LONG Fengying. Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 055201. doi: 10.11858/gywlxb.20240944
Citation: XU Yang, LI Mian, LI Yuanbing, LONG Fengying. Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 055201. doi: 10.11858/gywlxb.20240944

Pressure Rise Effect of Hydrogen-Methane Mixture Combustion under Dual Heterogeneous Obstacles

doi: 10.11858/gywlxb.20240944
  • Received Date: 21 Nov 2024
  • Rev Recd Date: 09 Jan 2025
  • Available Online: 09 Apr 2025
  • Issue Publish Date: 01 May 2025
  • The disaster characteristics of gas combustion and explosion are hot and key topics in domestic and international research. Studying the combustion and explosion characteristics under complex constraint conditions is of great significance. Regarding rigid and flexible obstacles, the combustion and explosion process of hydrogen-doped methane gas in a long straight pipeline with double heterogeneous obstacles was explored through experiments. The results show that, compared with the obstacle-free environment, the influence of double obstacles on the flame speed, explosion pressure, and explosion intensity index increases with the increase in the blockage ratio of the flexible obstacle and the addition of hydrogen. Moreover, the increase in explosion pressure and explosion intensity index is greater than that of the flame speed. Under the combined action of hydrogen addition and double obstacles, the flame contact speed can increase by up to 176.51%, and the maximum speed can increase by up to 316.40%. The double obstacles cause the pressure in the upstream region to rise first and then fall, and the pressure oscillation in the downstream region is obvious. After hydrogen addition, compared with the obstacle-free environment, the maximum explosion pressure in the pipeline can increase by up to 1280.9%, and the maximum explosion intensity index can increase to 167.65 times. In the layout engineering projects of constraint facilities, flexible obstacles with a smaller blockage ratio should be preferred to effectively mitigate the consequences of explosion hazards.

     

  • loading
  • [1]
    中国城市燃气协会安全管理工作委员会. 全国燃气事故分析报告(2024年上半年报告) [EB/OL]. (2024-10-09)[2024-11-02]. https://m.gmw.cn/2024-10/22/content_1303877758.htm.

    The Safety Management Working Committee of China Urban Gas Association. National gas accident analysis report (first half of 2024) [EB/OL]. (2024-10-09)[2024-11-02]. https://m.gmw.cn/2024-10/22/content_1303877758.htm.
    [2]
    ASTBURY G R. A review of the properties and hazards of some alternative fuels [J]. Process Safety and Environmental Protection, 2008, 86(6): 397–414. doi: 10.1016/j.psep.2008.05.001
    [3]
    CAI P, LI M Z, LIU Z Y, et al. Experimental and numerical study of natural gas leakage and explosion characteristics [J]. ACS Omega, 2022, 7(29): 25278–25290. doi: 10.1021/acsomega.2c02200
    [4]
    KANG Y, MA S Y, SONG B X, et al. Simulation of hydrogen leakage diffusion behavior in confined space [J]. International Journal of Hydrogen Energy, 2024, 53: 75–85. doi: 10.1016/j.ijhydene.2023.12.026
    [5]
    YANG N N, DENG J, WANG C P, et al. High pressure hydrogen leakage diffusion: research progress [J]. International Journal of Hydrogen Energy, 2024, 50: 1029–1046. doi: 10.1016/j.ijhydene.2023.08.221
    [6]
    KINDRACKI J, KOBIERA A, RARATA G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 551–561. doi: 10.1016/j.jlp.2007.05.010
    [7]
    QIAO Z L, MA H, LI C. Influence of change in obstacle blocking rate gradient on LPG explosion behavior [J]. Arabian Journal of Chemistry, 2023, 16(2): 104496. doi: 10.1016/j.arabjc.2022.104496
    [8]
    LI D, ZHANG Q, MA Q J, et al. Influence of built-in obstacles on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 449–456. doi: 10.1016/j.jlp.2016.07.007
    [9]
    XIAO G Q, WANG S, MI H F, et al. Analysis of obstacle shape on gas explosion characteristics [J]. Process Safety and Environmental Protection, 2022, 161: 78–87. doi: 10.1016/j.psep.2022.03.019
    [10]
    DUAN Y L, LEI S L, LI Z H, et al. Study on flexible/rigid protection mechanism of hydrogen/methane premixed gas explosion in urban underground space [J]. Process Safety and Environmental Protection, 2024, 182: 808–822. doi: 10.1016/j.psep.2023.12.028
    [11]
    LI Q, CICCARELLI G, SUN X X, et al. Flame propagation across a flexible obstacle in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2018, 43(36): 17480–17491. doi: 10.1016/j.ijhydene.2018.07.077
    [12]
    徐阿猛, 陈学习, 贾进章. 障碍物对瓦斯爆炸冲击波传播的影响研究 [J]. 中国安全科学学报, 2019, 29(9): 96–101. doi: 10.16265/j.cnki.issn1003-3033.2019.09.015

    XU A M, CHEN X X, JIA J Z. Effects of obstacles on gas explosion shock wave propagation [J]. China Safety Science Journal, 2019, 29(9): 96–101. doi: 10.16265/j.cnki.issn1003-3033.2019.09.015
    [13]
    XIU Z, LIU Z Y, LI P L, et al. Effects of combined obstacles on deflagration characteristics of hydrogen-air premixed gas [J]. International Journal of Hydrogen Energy, 2023, 48(79): 31008–31021. doi: 10.1016/j.ijhydene.2023.04.251
    [14]
    WANG S, XIAO G Q, FENG Y, et al. Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio [J]. Energy, 2023, 267: 126620. doi: 10.1016/j.energy.2023.126620
    [15]
    DUAN Y L, LONG F Y, HUANG J, et al. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio [J]. International Journal of Hydrogen Energy, 2022, 47(63): 27237–27249. doi: 10.1016/j.ijhydene.2022.06.065
    [16]
    雷桐桐. 障碍物影响气体爆炸特性的研究进展 [C]//2024年度灭火与应急救援技术学术研讨会. 珠海: 中国人民警察大学, 中国消防协会, 2024: 30–33.
    [17]
    王哲石. 密闭管道内柔性障碍物对可燃气气体爆炸特性的影响机制研究 [D]. 青岛: 青岛科技大学, 2023.

    WANG Z S. Effect mechanism of flexible obstacles on gas explosion characteristics in a confined [D]. Qingdao: Qingdao University of Science and Technology, 2023.
    [18]
    焦一飞, 熊晓曼, 任昊, 等. 多种材质障碍物对甲烷-氢气预混燃气的促爆影响 [J]. 高压物理学报, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682

    JIAO Y F, XIONG X M, REN H, et al. Effect of various material obstacles on the promoting explosion of methane-hydrogen premixed gas [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 015202. doi: 10.11858/gywlxb.20230682
    [19]
    LI Q, SUN X X, WANG X, et al. Experimental study of flame propagation across flexible obstacles in a square cross-section channel [J]. International Journal of Hydrogen Energy, 2019, 44(7): 3944–3952. doi: 10.1016/j.ijhydene.2018.12.085
    [20]
    YU S W, DUAN Y L, LONG F Y, et al. The influence of flexible/rigid obstacle on flame propagation and blast injuries risk in gas explosion [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 4520–4536. doi: 10.1080/15567036.2023.2205357
    [21]
    张静雯, 彭澳, 陈先锋, 等. 扰动作用下爆轰形成机理 [J]. 高压物理学报, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600

    ZHANG J W, PENG A, CHEN X F, et al. Mechanisms of detonation initiation under the effect of perturbation [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303. doi: 10.11858/gywlxb.20220600
    [22]
    张立业, 邓海涛, 孙桂军, 等. 天然气随动掺氢技术研究进展 [J]. 力学与实践, 2022, 44(4): 755–766. doi: 10.6052/1000-0879-22-056

    ZHANG L Y, DENG H T, SUN G J, et al. Research progress of natural gas follow-up hydrogen mixing technology [J]. Mechanics in Engineering, 2022, 44(4): 755–766. doi: 10.6052/1000-0879-22-056
    [23]
    ARIARATNAM S T, LUEKE J S, MICHAEL J K. Current trends in pipe bursting for renewal of underground infrastructure systems in North America [J]. Tunnelling and Underground Space Technology, 2014, 39: 41–49. doi: 10.1016/j.tust.2012.04.003
    [24]
    TONG Z X, FANG J. Comprehensive evaluation of PPP project construction for urban underground pipe gallery [C]//Proceedings of International Conference on Construction and Real Estate Management 2019. Reston, 2019: 425−433.
    [25]
    WANG Z H, CHEN X D. Risk management of urban pipe gallery based on system dynamics [J]. IOP Conference Series: Earth and Environmental Science, 2021, 693(1): 012003. doi: 10.1088/1755-1315/693/1/012003
    [26]
    CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69–77. doi: 10.1016/j.jlp.2016.11.017
    [27]
    曹玉忠, 卢泽生, 管怀安, 等. 抗爆容器内爆炸流场数值模拟 [J]. 高压物理学报, 2001, 15(2): 127–133. doi: 10.11858/gywlxb.2001.02.009

    CAO Y Z, LU Z S, GUAN H A, et al. Numerical simulations of blast flow-fields in closed blast-resistant containers [J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 127–133. doi: 10.11858/gywlxb.2001.02.009
    [28]
    WANG Z S, ZHANG Z L, YU J, et al. The effect of flexible obstacles with different thicknesses on explosion propagation of premixed methane-air in a confined duct [J]. Heliyon, 2023, 9(8): e18803. doi: 10.1016/J.HELIYON.2023.E18803
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(458) PDF downloads(30) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return