| Citation: | LEI Xueliang, ZHOU Zonghong, LIU Jian, FENG Zhansuo, JING Mingqiang. Prediction of Rock Burst Intensity Based on the ISCSO-KELM Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085303. doi: 10.11858/gywlxb.20240913 |
| [1] |
李鲒, 傅鹤林, 李国良, 等. 基于能量考虑危害性与可能性的岩爆评价指标 [J]. 华中科技大学学报(自然科学版), 2023, 51(10): 126–133. doi: 10.13245/j.hust.230687
LI J, FU H L, LI G L, et al. Rockburst evaluation index considering degree of hazard and possibility of rockburst occurrence based on energy analysis [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(10): 126–133. doi: 10.13245/j.hust.230687
|
| [2] |
刘德军, 戴庆庆, 左建平, 等. 基于Stacking集成算法的岩爆等级预测研究 [J]. 岩石力学与工程学报, 2022, 41(Suppl 1): 2915–2926. doi: 10.13722/j.cnki.jrme.2021.0831
LIU D J, DAI Q Q, ZUO J P, et al. Research on rockburst grade prediction based on stacking integrated algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 1): 2915–2926. doi: 10.13722/j.cnki.jrme.2021.0831
|
| [3] |
靳春玲, 姬照泰, 贡力, 等. 基于WOA-SVM的引水隧洞岩爆烈度评估模型 [J]. 中国安全科学学报, 2023, 33(9): 41–48. doi: 10.16265/j.cnki.issn1003-3033.2023.09.1143
JIN C L, JI Z T, GONG L, et al. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41–48. doi: 10.16265/j.cnki.issn1003-3033.2023.09.1143
|
| [4] |
詹术霖, 黄明清, 陈霖, 等. 基于3种机器学习模型的岩爆类型预测 [J]. 福州大学学报(自然科学版), 2023, 51(6): 879–886. doi: 10.7631/issn.1000-2243.22570
ZHAN S L, HUANG M Q, CHEN L, et al. Rockburst type prediction based on three machine learning models [J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(6): 879–886. doi: 10.7631/issn.1000-2243.22570
|
| [5] |
侯克鹏, 包广拓, 孙华芬. 改进的MVO-GRNN神经网络岩爆预测模型研究 [J]. 安全与环境学报, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341
HOU K P, BAO G T, SUN H F. Research on improved MVO-GRNN neural network rockburst prediction model [J]. Journal of Safety and Environment, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341
|
| [6] |
李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测 [J]. 中南大学学报(自然科学版), 2017, 48(5): 1268–1275.
LI N, WANG L G, JIA M T. Rockburst prediction based on rough set theory and support vector machine [J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1268–1275.
|
| [7] |
刘剑, 周宗红. 基于修正散点图矩阵与随机森林的岩爆等级预测 [J]. 有色金属工程, 2022, 12(3): 120–128. doi: 10.3969/j.issn.2095-1744.2022.03.016
LIU J, ZHOU Z H. Rockburst grade prediction based on modified scatter graph matrix and random forest [J]. Nonferrous Metals Engineering, 2022, 12(3): 120–128. doi: 10.3969/j.issn.2095-1744.2022.03.016
|
| [8] |
白云飞, 邓建, 董陇军, 等. 深部硬岩岩爆预测的FDA模型及其应用 [J]. 中南大学学报(自然科学版), 2009, 40(5): 1417–1422.
BAI Y F, DENG J, DONG L J, et al. Fisher discriminant analysis model of rock burst prediction and its application in deep hard rock engineering [J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1417–1422.
|
| [9] |
张晓君, 刘啸, 王宇晨. 基于扰动和层间作用的硬岩层爆演化及预测 [J]. 采矿与安全工程学报, 2024, 41(3): 504–510. doi: 10.13545/j.cnki.jmse.2022.0326
ZHANG X J, LIU X, WANG Y C. Study on the evolution and prediction of stratified burst in hard rocks based on disturbance and interlayer interaction [J]. Journal of Mining and Safety Engineering, 2024, 41(3): 504–510. doi: 10.13545/j.cnki.jmse.2022.0326
|
| [10] |
刘春, 易俊, 姜德义, 等. 基于灰色关联分析理论的岩爆烈度预测研究 [J]. 中国矿业, 2007, 16(12): 100–103. doi: 10.3969/j.issn.1004-4051.2007.12.031
LIU C, YI J, JIANG D Y, et al. Study on rockburst intensity prediction method based on gray relational analysis theory [J]. China Mining Magazine, 2007, 16(12): 100–103. doi: 10.3969/j.issn.1004-4051.2007.12.031
|
| [11] |
温廷新, 王泽锋. 基于K-means SMOTE和IDBO-RF岩爆烈度等级预测模型 [J]. 中国安全生产科学技术, 2024, 20(6): 140–146. doi: 10.11731/j.issn.1673-193x.2024.06.019
WEN T X, WANG Z F. Prediction model of rockburst intensity levels based on K-means SMOTE and IDBO-RF [J]. Journal of Safety Science and Technology, 2024, 20(6): 140–146. doi: 10.11731/j.issn.1673-193x.2024.06.019
|
| [12] |
周航, 陈仕阔, 张广泽, 等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究 [J]. 工程地质学报, 2020, 28(6): 1386–1396. doi: 10.13544/j.cnki.jeg.2019-340
ZHOU H, CHEN S K, ZHANG G Z, et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel [J]. Journal of Engineering Geology, 2020, 28(6): 1386–1396. doi: 10.13544/j.cnki.jeg.2019-340
|
| [13] |
吴菡, 郭永刚, 郝守宁, 等. 数据缺失的SOA-KELM岩爆倾向性预测 [J]. 有色金属(矿山部分), 2023, 75(6): 148–155, 170. doi: 10.3969/j.issn.1671-4172.2023.06.021
WU H, GUO Y G, HAO S N, et al. SOA-KELM rockburst risk prediction with missing data [J]. Nonferrous Metals (Mining Section), 2023, 75(6): 148–155, 170. doi: 10.3969/j.issn.1671-4172.2023.06.021
|
| [14] |
郭延华, 赵帅. 基于KPCA-WOA-KELM的岩爆烈度预测 [J]. 河北工程大学学报(自然科学版), 2021, 38(2): 1–7. doi: 10.3969/j.issn.1673-9469.2021.02.001
GUO Y H, ZHAO S. Classified prediction model of rockburst using KPCA-WOA-KELM [J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(2): 1–7. doi: 10.3969/j.issn.1673-9469.2021.02.001
|
| [15] |
刘志祥, 郑斌, 刘进, 等. 金属矿深部开采岩爆危险预测的GA-ELM模型研究 [J]. 矿冶工程, 2019, 39(3): 1–4. doi: 10.3969/j.issn.0253-6099.2019.03.001
LIU Z X, ZHENG B, LIU J, et al. Rockburst prediction with GA-ELM model for deep mining of metal mines [J]. Mining and Metallurgical Engineering, 2019, 39(3): 1–4. doi: 10.3969/j.issn.0253-6099.2019.03.001
|
| [16] |
兰明, 刘志祥, 冯凡. 在线极限学习机在岩爆预测中的应用 [J]. 安全与环境学报, 2014, 14(2): 90–93. doi: 10.13637/j.issn.1009-6094.2014.02.020
LAN M, LIU Z X, FENG F. Attempt to study the applicability of the online sequential extreme learning machine to the rock burst forecast [J]. Journal of Safety and Environment, 2014, 14(2): 90–93. doi: 10.13637/j.issn.1009-6094.2014.02.020
|
| [17] |
ZHOU J, LI X B, SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines [J]. Safety Science, 2012, 50(4): 629–644. doi: 10.1016/j.ssci.2011.08.065
|
| [18] |
PU Y Y, APEL D B, XU H W. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier [J]. Tunnelling and Underground Space Technology, 2019, 90: 12–18. doi: 10.1016/j.tust.2019.04.019
|
| [19] |
回立川, 于千皓. 多策略混合的改进沙猫群优化算法及其应用 [J]. 控制与决策, 2024, 39(10): 3216–3224. doi: 10.13195/j.kzyjc.2023.1095
HUI L C, YU Q H. Improved sand cat swarm optimization algorithm based on multi-strategy mixing and its application [J]. Control and Decision, 2024, 39(10): 3216–3224. doi: 10.13195/j.kzyjc.2023.1095
|
| [20] |
SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems [J]. Engineering with Computers, 2023, 39(4): 2627–2651. doi: 10.1007/s00366-022-01604-x
|
| [21] |
熊自然. 基于解路径的核方法模型选择研究 [D]. 南京: 南京信息工程大学, 2022: 13−16.
XIONG Z R. Research on kernel method model selection based on solution path [D]. Nanjing: Nanjing University of Information Science & Technology, 2022: 13−16.
|
| [22] |
汤志立. 深埋隧道岩爆预警与围岩动力破坏机理研究 [D]. 北京: 清华大学, 2019: 31−37.
TANG Z L. Study on rockburst precursors and dynamic failure mechanism of deep-buried tunnels [D]. Beijing: Tsinghua University, 2019: 31−37.
|
| [23] |
谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测 [J]. 岩石力学与工程学报, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035
TAN W K, YE Y C, HU N Y, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035
|