Volume 39 Issue 8
Aug 2025
Turn off MathJax
Article Contents
LEI Xueliang, ZHOU Zonghong, LIU Jian, FENG Zhansuo, JING Mingqiang. Prediction of Rock Burst Intensity Based on the ISCSO-KELM Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085303. doi: 10.11858/gywlxb.20240913
Citation: LEI Xueliang, ZHOU Zonghong, LIU Jian, FENG Zhansuo, JING Mingqiang. Prediction of Rock Burst Intensity Based on the ISCSO-KELM Model[J]. Chinese Journal of High Pressure Physics, 2025, 39(8): 085303. doi: 10.11858/gywlxb.20240913

Prediction of Rock Burst Intensity Based on the ISCSO-KELM Model

doi: 10.11858/gywlxb.20240913
  • Received Date: 17 Oct 2024
  • Rev Recd Date: 24 Nov 2024
  • Accepted Date: 24 Nov 2024
  • Issue Publish Date: 05 Aug 2025
  • In order to reduce the occurrence of rock burst accidents during construction, the rock burst intensity should be assessed. In this paper, we propose a new rock burst prediction model based on the improved sandcat swam optimization-kernel based extreme learning machhine (ISCSO-KELM) algorithm. The maximum tangential stress, uniaxial compressive strength, uniaxial tensile strength and rock elastic energy index were selected as the evaluation indexes of rock burst. 105 domestic and international examples of rock burst were selected as samples for machine learning. Comparison of the relative ratios of the model presented herein with confusion matrix predicted by models including random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM) and kernel based extreme learning machhine (KELM) models shows that, the ISCSO-KELM model is superior at assessing both evaluation accuracy and recall. The evaluation accuracy of the model reached 96.774 2%, indicating the superiority of ISCSO-KELM. Relevant engineering cases were used to verify the rock burst intensity. The results show that ISCSO-KELM model is more effective in capturing the connection between rock burst intensity and the indexes, thus providing a new highly applicable method for rock burst prediction.

     

  • loading
  • [1]
    李鲒, 傅鹤林, 李国良, 等. 基于能量考虑危害性与可能性的岩爆评价指标 [J]. 华中科技大学学报(自然科学版), 2023, 51(10): 126–133. doi: 10.13245/j.hust.230687

    LI J, FU H L, LI G L, et al. Rockburst evaluation index considering degree of hazard and possibility of rockburst occurrence based on energy analysis [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(10): 126–133. doi: 10.13245/j.hust.230687
    [2]
    刘德军, 戴庆庆, 左建平, 等. 基于Stacking集成算法的岩爆等级预测研究 [J]. 岩石力学与工程学报, 2022, 41(Suppl 1): 2915–2926. doi: 10.13722/j.cnki.jrme.2021.0831

    LIU D J, DAI Q Q, ZUO J P, et al. Research on rockburst grade prediction based on stacking integrated algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 1): 2915–2926. doi: 10.13722/j.cnki.jrme.2021.0831
    [3]
    靳春玲, 姬照泰, 贡力, 等. 基于WOA-SVM的引水隧洞岩爆烈度评估模型 [J]. 中国安全科学学报, 2023, 33(9): 41–48. doi: 10.16265/j.cnki.issn1003-3033.2023.09.1143

    JIN C L, JI Z T, GONG L, et al. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41–48. doi: 10.16265/j.cnki.issn1003-3033.2023.09.1143
    [4]
    詹术霖, 黄明清, 陈霖, 等. 基于3种机器学习模型的岩爆类型预测 [J]. 福州大学学报(自然科学版), 2023, 51(6): 879–886. doi: 10.7631/issn.1000-2243.22570

    ZHAN S L, HUANG M Q, CHEN L, et al. Rockburst type prediction based on three machine learning models [J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(6): 879–886. doi: 10.7631/issn.1000-2243.22570
    [5]
    侯克鹏, 包广拓, 孙华芬. 改进的MVO-GRNN神经网络岩爆预测模型研究 [J]. 安全与环境学报, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341

    HOU K P, BAO G T, SUN H F. Research on improved MVO-GRNN neural network rockburst prediction model [J]. Journal of Safety and Environment, 2024, 24(3): 923–932. doi: 10.13637/j.issn.1009-6094.2023.0341
    [6]
    李宁, 王李管, 贾明涛. 基于粗糙集理论和支持向量机的岩爆预测 [J]. 中南大学学报(自然科学版), 2017, 48(5): 1268–1275.

    LI N, WANG L G, JIA M T. Rockburst prediction based on rough set theory and support vector machine [J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1268–1275.
    [7]
    刘剑, 周宗红. 基于修正散点图矩阵与随机森林的岩爆等级预测 [J]. 有色金属工程, 2022, 12(3): 120–128. doi: 10.3969/j.issn.2095-1744.2022.03.016

    LIU J, ZHOU Z H. Rockburst grade prediction based on modified scatter graph matrix and random forest [J]. Nonferrous Metals Engineering, 2022, 12(3): 120–128. doi: 10.3969/j.issn.2095-1744.2022.03.016
    [8]
    白云飞, 邓建, 董陇军, 等. 深部硬岩岩爆预测的FDA模型及其应用 [J]. 中南大学学报(自然科学版), 2009, 40(5): 1417–1422.

    BAI Y F, DENG J, DONG L J, et al. Fisher discriminant analysis model of rock burst prediction and its application in deep hard rock engineering [J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1417–1422.
    [9]
    张晓君, 刘啸, 王宇晨. 基于扰动和层间作用的硬岩层爆演化及预测 [J]. 采矿与安全工程学报, 2024, 41(3): 504–510. doi: 10.13545/j.cnki.jmse.2022.0326

    ZHANG X J, LIU X, WANG Y C. Study on the evolution and prediction of stratified burst in hard rocks based on disturbance and interlayer interaction [J]. Journal of Mining and Safety Engineering, 2024, 41(3): 504–510. doi: 10.13545/j.cnki.jmse.2022.0326
    [10]
    刘春, 易俊, 姜德义, 等. 基于灰色关联分析理论的岩爆烈度预测研究 [J]. 中国矿业, 2007, 16(12): 100–103. doi: 10.3969/j.issn.1004-4051.2007.12.031

    LIU C, YI J, JIANG D Y, et al. Study on rockburst intensity prediction method based on gray relational analysis theory [J]. China Mining Magazine, 2007, 16(12): 100–103. doi: 10.3969/j.issn.1004-4051.2007.12.031
    [11]
    温廷新, 王泽锋. 基于K-means SMOTE和IDBO-RF岩爆烈度等级预测模型 [J]. 中国安全生产科学技术, 2024, 20(6): 140–146. doi: 10.11731/j.issn.1673-193x.2024.06.019

    WEN T X, WANG Z F. Prediction model of rockburst intensity levels based on K-means SMOTE and IDBO-RF [J]. Journal of Safety Science and Technology, 2024, 20(6): 140–146. doi: 10.11731/j.issn.1673-193x.2024.06.019
    [12]
    周航, 陈仕阔, 张广泽, 等. 基于功效系数法和地应力场反演的深埋长大隧道岩爆预测研究 [J]. 工程地质学报, 2020, 28(6): 1386–1396. doi: 10.13544/j.cnki.jeg.2019-340

    ZHOU H, CHEN S K, ZHANG G Z, et al. Efficiency coefficient method and ground stress field inversion for rockburst predicition in deep and long tunnel [J]. Journal of Engineering Geology, 2020, 28(6): 1386–1396. doi: 10.13544/j.cnki.jeg.2019-340
    [13]
    吴菡, 郭永刚, 郝守宁, 等. 数据缺失的SOA-KELM岩爆倾向性预测 [J]. 有色金属(矿山部分), 2023, 75(6): 148–155, 170. doi: 10.3969/j.issn.1671-4172.2023.06.021

    WU H, GUO Y G, HAO S N, et al. SOA-KELM rockburst risk prediction with missing data [J]. Nonferrous Metals (Mining Section), 2023, 75(6): 148–155, 170. doi: 10.3969/j.issn.1671-4172.2023.06.021
    [14]
    郭延华, 赵帅. 基于KPCA-WOA-KELM的岩爆烈度预测 [J]. 河北工程大学学报(自然科学版), 2021, 38(2): 1–7. doi: 10.3969/j.issn.1673-9469.2021.02.001

    GUO Y H, ZHAO S. Classified prediction model of rockburst using KPCA-WOA-KELM [J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(2): 1–7. doi: 10.3969/j.issn.1673-9469.2021.02.001
    [15]
    刘志祥, 郑斌, 刘进, 等. 金属矿深部开采岩爆危险预测的GA-ELM模型研究 [J]. 矿冶工程, 2019, 39(3): 1–4. doi: 10.3969/j.issn.0253-6099.2019.03.001

    LIU Z X, ZHENG B, LIU J, et al. Rockburst prediction with GA-ELM model for deep mining of metal mines [J]. Mining and Metallurgical Engineering, 2019, 39(3): 1–4. doi: 10.3969/j.issn.0253-6099.2019.03.001
    [16]
    兰明, 刘志祥, 冯凡. 在线极限学习机在岩爆预测中的应用 [J]. 安全与环境学报, 2014, 14(2): 90–93. doi: 10.13637/j.issn.1009-6094.2014.02.020

    LAN M, LIU Z X, FENG F. Attempt to study the applicability of the online sequential extreme learning machine to the rock burst forecast [J]. Journal of Safety and Environment, 2014, 14(2): 90–93. doi: 10.13637/j.issn.1009-6094.2014.02.020
    [17]
    ZHOU J, LI X B, SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines [J]. Safety Science, 2012, 50(4): 629–644. doi: 10.1016/j.ssci.2011.08.065
    [18]
    PU Y Y, APEL D B, XU H W. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier [J]. Tunnelling and Underground Space Technology, 2019, 90: 12–18. doi: 10.1016/j.tust.2019.04.019
    [19]
    回立川, 于千皓. 多策略混合的改进沙猫群优化算法及其应用 [J]. 控制与决策, 2024, 39(10): 3216–3224. doi: 10.13195/j.kzyjc.2023.1095

    HUI L C, YU Q H. Improved sand cat swarm optimization algorithm based on multi-strategy mixing and its application [J]. Control and Decision, 2024, 39(10): 3216–3224. doi: 10.13195/j.kzyjc.2023.1095
    [20]
    SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems [J]. Engineering with Computers, 2023, 39(4): 2627–2651. doi: 10.1007/s00366-022-01604-x
    [21]
    熊自然. 基于解路径的核方法模型选择研究 [D]. 南京: 南京信息工程大学, 2022: 13−16.

    XIONG Z R. Research on kernel method model selection based on solution path [D]. Nanjing: Nanjing University of Information Science & Technology, 2022: 13−16.
    [22]
    汤志立. 深埋隧道岩爆预警与围岩动力破坏机理研究 [D]. 北京: 清华大学, 2019: 31−37.

    TANG Z L. Study on rockburst precursors and dynamic failure mechanism of deep-buried tunnels [D]. Beijing: Tsinghua University, 2019: 31−37.
    [23]
    谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测 [J]. 岩石力学与工程学报, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035

    TAN W K, YE Y C, HU N Y, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186–1194. doi: 10.13722/j.cnki.jrme.2020.1035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(8)

    Article Metrics

    Article views(114) PDF downloads(18) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return