Volume 39 Issue 5
May. 2025
Turn off MathJax
Article Contents
FENG Jiaxing, YUAN Liwei, PENG Ji, CHEN Minghui, CHEN Di, QI Zhuo. Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897
Citation: FENG Jiaxing, YUAN Liwei, PENG Ji, CHEN Minghui, CHEN Di, QI Zhuo. Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2025, 39(5): 054202. doi: 10.11858/gywlxb.20240897

Frequency Characterization of Stress Wave Vibration Signals in Rock Mass under Impact Loading

doi: 10.11858/gywlxb.20240897
  • Received Date: 28 Sep 2024
  • Rev Recd Date: 28 Oct 2024
  • Accepted Date: 14 Feb 2025
  • Available Online: 18 Apr 2025
  • Issue Publish Date: 01 May 2025
  • Rock body will generate signals with different frequencies under the impact of external loads. This paper monitors the stress wave signals before and after the rock body is subjected to transient impact loads through the fiber-optic monitoring system with homemade probes, and conducts time-frequency analysis of the experimental monitoring signals using the robust local mean decomposition (RLMD) method combined with the fast Fourier transform (FFT). After that, LS-DYNA software is used to simulate the impact load applied to the rock body and generate the stress wave, and the frequency of the stress wave is verified against the frequency of the experimentally monitored stress wave. Finally, the relationship between the simulated stress wave frequency change under the change of elastic modulus and density is analyzed. Results show that the signals monitored in the field will appear as multiple signals with great amplitude after spectral decomposition of 15002300 Hz after the impact is applied in the field, which is consistent with the simulation result of the time-frequency analysis of the stress wave in the main frequency signal of 2203 Hz, and the opposite trend to the frequency change indicated by the one-dimensional planar stress wave derivation, which will be the next step of the research issue.

     

  • loading
  • [1]
    王世鸣, 白云帆, 王嘉琪, 等. 应力波斜入射下砂岩层裂破坏的试验研究 [J]. 振动与冲击, 2024, 43(14): 201–210.

    WANG S M, BAI Y F, WANG J Q, et al. Experimental study on the spalling failure of sandstone under the oblique incidence of stress waves [J]. Journal of Vibration and Shock, 2024, 43(14): 201–210.
    [2]
    宁建国, 李壮, 王俊, 等. 动态拉应力波作用下锚固体力学响应试验研究 [J]. 采矿与安全工程学报, 2022, 39(4): 731–740.

    NING J G, LI Z, WANG J, et al. Experimental study on mechanical response of anchored body under dynamic tensile stress wave [J]. Journal of Mining & Safety Engineering, 2022, 39(4): 731–740.
    [3]
    刘啸, 华心祝, 黄志国, 等. 应力波作用下含大型结构面岩体垮塌动力失稳机制 [J]. 岩石力学与工程学报, 2021, 40(10): 2003–2014.

    LIU X, HUA X Z, HUANG Z G, et al. Dynamic collapse mechanisms of rock mass with large structural planes under stress waves [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2003–2014.
    [4]
    伍武星, 宫凤强, 高明忠, 等. 冲击扰动下断面形状对深部隧洞岩爆的影响研究 [J]. 岩石力学与工程学报, 2024, 43(9): 2257–2272.

    WU W X, GONG F Q, GAO M Z, et al. Study on the influence of cross-section shape on rockburst of deep tunnels under impact disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(9): 2257–2272.
    [5]
    朱权洁, 姜福兴, 于正兴, 等. 爆破震动与岩石破裂微震信号能量分布特征研究 [J]. 岩石力学与工程学报, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011

    ZHU Q J, JIANG F X, YU Z X, et al. Study on energy distribution characters about blasting vibration and rock fracture microseismic signal [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 723–730. doi: 10.3969/j.issn.1000-6915.2012.04.011
    [6]
    郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究 [J]. 岩石力学与工程学报, 2024, 43(6): 1406–1424.

    HAO J, LIU H Q, LIU J K, et al. Experimental study of rock uniaxial compressive strength prediction with drilling based on vibration signals [J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406–1424.
    [7]
    MA B L, ZHANG K, XIAO F Y, et al. Experimental and numerical studies on the shear mechanical behavior of rock joints under normal vibration loads [J]. Computers and Geotechnics, 2024, 165: 105892. doi: 10.1016/j.compgeo.2023.105892
    [8]
    KUMAR C V, VARDHAN H, MURTHY C S N, et al. Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 850–859. doi: 10.1016/j.jrmge.2019.01.001
    [9]
    张艳博, 王博, 梁鹏, 等. 大理岩单轴压缩破坏次声波特征的加载速率效应研究 [J]. 煤炭学报, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440

    ZHANG Y B, WANG B, LIANG P, et al. Loading rate effects on infrasound characterization of uniaxial compression damage in marble [J]. Journal of China Coal Society, 2024, 49(Suppl 2): 821−831. doi: 10.13225/j.cnki.jccs.2023.1440
    [10]
    刘刚, 张家林, 刘闯, 等. 钻头钻进不同介质时的振动信号特征识别研究 [J]. 振动与冲击, 2017, 36(8): 71–78, 104.

    LIU G, ZHANG J L, LIU C, et al. An identification method of vibration signal features when bit drills different mediums [J]. Journal of Vibration and Shock, 2017, 36(8): 71–78, 104.
    [11]
    王盟, 翁顺, 余兴胜, 等. 基于时变模态振型小波变换的结构损伤识别方法 [J]. 振动与冲击, 2021, 40(16): 10–19.

    WANG M, WENG S, YU X S, et al. Structural damage identification based on time-varying modal mode shape of wavelet transformation [J]. Journal of Vibration and Shock, 2021, 40(16): 10–19.
    [12]
    朱振飞, 陈国庆, 肖宏跃, 等. 基于声发射多参量分析的岩桥裂纹扩展研究 [J]. 岩石力学与工程学报, 2018, 37(4): 909–918.

    ZHU Z F, CHEN G Q, XIAO H Y, et al. Study on crack propagation of rock bridge based on multi parameters analysis of acoustic emission [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 909–918.
    [13]
    付荣, 傅荣华, 付安生. 基于快速傅里叶变换的地震波加速度构成及其幅频特性研究 [J]. 地震学报, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007

    FU R, FU R H, FU A S. Composition and amplitude-frequency characteristics of ground motion acceleration based on fast Fourier transform analysis [J]. Acta Seismologica Sinica, 2014, 36(3): 417–424. doi: 10.3969/j.issn.0253-3782.2014.03.007
    [14]
    徐杨杨, 孙建国, 商耀达. 一种利用Nyström离散与FFT快速褶积的散射地震波并行计算方法 [J]. 地球物理学报, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391

    XU Y Y, SUN J G, SHANG Y D. A parallel computation method for scattered seismic waves using NystrÖm discretization and FFT fast convolution [J]. Chinese Journal of Geophysics, 2021, 64(8): 2877–2887. doi: 10.6038/cjg2021O0391
    [15]
    颜少廷, 周玉国, 任艳波, 等. 基于RLMD和Kmeans++的轴承故障诊断方法 [J]. 机械传动, 2021, 45(2): 163–170.

    YAN S T, ZHOU Y G, REN Y B, et al. Bearing fault diagnosis method based on RLMD and Kmeans++ [J]. Journal of Mechanical Transmission, 2021, 45(2): 163–170.
    [16]
    张亢. 局部均值分解方法及其在旋转机械故障诊断中的应用研究 [D]. 长沙: 湖南大学, 2012.

    ZHANG K. Research on local mean decomposition method and its application to rotating machinery fault diagnosis [D]. Changsha: Hunan University, 2012.
    [17]
    SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443–454. doi: 10.1098/rsif.2005.0058
    [18]
    郑菲. 次声波源产生的机理及有限元模拟 [D]. 成都: 成都理工大学, 2015.

    ZHENG F. The mechanism of infrasound source and finite element simulation [D]. Chengdu: Chengdu University of Technology, 2015.
    [19]
    赵久彬, 刘元雪, 柏准, 等. 土体中岩石破坏次声波的三维多测点振速矢量直线汇聚声源定位方法 [J]振动与冲击, 2021, 40(14): 144–152.

    ZHAO J B, LIU Y X, BAI Z, et al. Sound source location method with three-dimensional multi-point measurement and particle velocity-vector linear convergence approach for infrasound generated by rock failure in soil [J]. Journal of Vibration and Shock, 2021, 40(14): 144–152.
    [20]
    RIEDEL W, KAWAI N, KONDO K. Numerical assessment for impact strength measurements in concrete materials [J]. International Journal of Impact Engineering, 2007, 36(2): 283–293.
    [21]
    李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学, 2016.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology, 2016.
    [22]
    李洪超, 刘殿书, 赵磊, 等. 大理岩RHT模型参数确定研究 [J]. 北京理工大学学报, 2017, 37(8): 801–806.

    LI H C, LIU D S, ZHAO L, et al. Study on parameters determination of marble RHT model [J]. Transactions of Beijing Institute of Technology, 2017, 37(8): 801–806.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(269) PDF downloads(28) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return