Volume 29 Issue 5
Dec 2015
Turn off MathJax
Article Contents
CHEN Tao, JIANG Zhao-Xiu, XING Ming-Zhi, SHEN Hai-Ting, WANG Yong-Gang. Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001
Citation: CHEN Tao, JIANG Zhao-Xiu, XING Ming-Zhi, SHEN Hai-Ting, WANG Yong-Gang. Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001

Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures

doi: 10.11858/gywlxb.2015.05.001
  • Received Date: 25 May 2014
  • Plate impact tests at normal and elevated temperatures were conducted to examine the influence of temperature on the dynamic response of 2 aluminum alloys (2024-T4 and 7075-T6) with the temperature range of 300-750 K.The free-surface velocity profiles, including the elastic precursor amplitude, pull-back amplitude and the acceleration of pull-back signals were investigated at different temperatures.Hugoniot elastic limit (HEL) strength and spall strength were calculated using the free surface velocity profiles.Normalized HEL strength and normalized spall strength of 2024-T4 Al and 7075-T6 Al exhibit a similar linear decrease with increasing temperature.A cohesive zone model (CZM) was developed to simulate the spall behavior of aluminum alloys at different pre-heated temperatures.The physical meaning of CZM parameters and how to determine these parameters were discussed.It is found that the predicted free surface velocity profiles under different temperatures are in very good agreement with the experimental data, especially the slope, frequency and decay of the free surface velocity oscillations in the later phases of spalling, which demonstrates that the cohesive law is well applicable to characterize the energy dissipated behavior due to damage evolution.

     

  • loading
  • [1]
    Antoun T, Seaman L, Curran D R, et al. Spall Fracture[M]. Berlin: Springer, 2003.
    [2]
    Curran D R, Seaman L, Shockey D A. Dynamic failure of solids[J]. Phys Rep, 1987, 147(5/6): 253-388. http://www.sciencedirect.com/science/article/pii/0370157387900494
    [3]
    贺红亮.动态拉伸断裂的物理判据研究[J].高压物理学报, 2013, 27(2): 153-161. doi: 10.11858/gywlxb.2013.02.001

    He H L. Physical criterion of dynamic tensile fracture[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153-161. (in Chinese) doi: 10.11858/gywlxb.2013.02.001
    [4]
    Williams C L, Ramesh K T, Dandekar D P. Spall response of 1100-O aluminum[J]. J Appl Phys, 2012, 111: 123528. doi: 10.1063/1.4729305
    [5]
    王焕然, 王永刚, 贺红亮.基于微孔洞长大惯性机制的动态拉伸断裂模型构建[J].高压物理学报, 2012, 26(3): 294-300. doi: 10.11858/gywlxb.2012.03.008

    Wang H R, Wang Y G, He H L. Modeling of dynamic tensile fracture accounting for micro-inertia effect on void growth[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 294-300. (in Chinese) doi: 10.11858/gywlxb.2012.03.008
    [6]
    桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究[J].高压物理学报, 2006, 20(1): 34-38. doi: 10.11858/gywlxb.2006.01.008

    Gui Y L, Liu C L, Wang Y P, et al. Spall fracture properties of AF1410 steel[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34-38. (in Chinese) doi: 10.11858/gywlxb.2006.01.008
    [7]
    Wang Y G, Qi M L, He H L, et al. Spall failure of aluminum materials with different microstructures[J]. Mech Mater, 2014, 69: 270-279. doi: 10.1016/j.mechmat.2013.11.005
    [8]
    Grady D E. The spall strength of condensed matter[J]. J Mech Phys Solids, 1988, 36: 353-384. doi: 10.1016/0022-5096(88)90015-4
    [9]
    Kanel G I, Razorenov S V, Utkin A V, et al. The spall strength of metals at elevated temperatures[C]∥Schmidt S C, Tao W C. Shock Compression of Condensed Matter-1995. New York: American Institute of Physics, 1996: 503-506.
    [10]
    Chhabildas L C, Barker L M, Asay J R, et al. Spall strength measurements on shock-loaded refractory metals[C]//Schmidt S C, Johnson J N, Davison L W. Shock Compression of Condensed Matter-1989. Amsterdam: North-Holland, 1990: 429-432.
    [11]
    谷卓伟, 金孝刚, 张清福, 等.材料预加热冲击压缩实验技术及高温下不锈钢的动态响应[J].高压物理学报, 1998, 12(3): 190-198. doi: 10.11858/gywlxb.1998.03.005

    Gu Z W, Jin X G, Zhang Q F, et al. A set of experimental device of preheating materials under shock compression and shock response of stainless steel with high temperatuer[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-198. (in Chinese) doi: 10.11858/gywlxb.1998.03.005
    [12]
    Zaretsky E B. Impact response of titanium from the ambient temperature to 1 000 ℃[J]. J Appl Phys, 2008, 104: 123505. doi: 10.1063/1.3042229
    [13]
    Zaretsky E B. Impact response of cobalt over the 300-1 400 K temperature range[J]. J Appl Phys, 2010, 108: 083525. doi: 10.1063/1.3501107
    [14]
    Zaretsky E B. Shock response of iron between 143 and 1 275 K[J]. J Appl Phys, 2009, 106: 023510. doi: 10.1063/1.3174442
    [15]
    Weng J D, Wang X, Ma Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Rev Sci Instrum, 2008, 79: 113101. doi: 10.1063/1.3020700
    [16]
    王永刚, 陈登平, 贺红亮, 等.冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性[J].物理学报, 2006, 55(8): 4202-4207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200608070

    Wang Y G, Chen D P, He H L, et al. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading[J]. Acta Phys Sin, 2006, 55(8): 4202-4207. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200608070
    [17]
    Dassault Systèmes Simulia Corp. Abaqus Analysis User's Manual[Z]. Providence, RI: Dassault Systèmes Simulia Corp, 2007.
    [18]
    Zurek A K, Thissell W R, Johnson J N, et al. Micromechanics of spall and damage in tantalum[J]. J Mater Process Technol, 1996, 60: 261-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=za0ZC6SY0X6dNiwXWPad6Ya+e1w8dQ/j20JvnFWXor4=
    [19]
    Kanel G I, Razorenov S V, Fortov V E. Shock-wave compression and tension of solids at elevated temperatures: superheated crystal states, pre-melting, and anomalous growth of the yield strength[J]. J Phys Condens Matter, 2004, 16: S1007-S1016. doi: 10.1088/0953-8984/16/14/010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(7380) PDF downloads(166) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return