| Citation: | WANG Xin-Zheng, ZHANG Song-Lin, ZHANG Qing-Ming, QIN Zhi-Gui, CHEN Min, LI Wen-Jie. Analysis of Reactive Hot Spot for Thermite under Shock Waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 665-673. doi: 10.11858/gywlxb.2012.06.011 |
|
Feng C G. Theory of Heat Ignition [M]. Changchun: Jilin Science and Technology Press, 1991. (in Chinese)
|
|
冯长根. 热点火理论 [M]. 长春: 吉林科学技术出版社, 1991.
|
|
Meyers M A, Murr L E. Shock-Wave and High-Strain-Rate Phenomena in Materials [M]. New York: Marcel Dekker, Inc, 1992: 233-492, 783-794.
|
|
Thadhani N, Chen E. Shock Synthesis of Materials [M]. Atlanta: Georgia Institute of Technology, 1994.
|
|
Kang J, Butler P B. A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials [J]. Combust Flame, 1992, 89: 117-139.
|
|
Bourne N K. On the collapse of cavities [J]. Shock Waves, 2002, 11: 447-455.
|
|
Dubnov L V, Sukhikh V A. On the nature of mechanically induced hot spots in condensed explosives [J]. Combustion, Explosion, and Shock Waves, 1971, 7(1): 123-125.
|
|
Burkina R S, Vilyunov V N. Initiation of chemical reaction at a Hot Spot [J]. Combustion, Explosion, and Shock Waves, 1980, 16(4): 423-426.
|
|
Knyazeva A G. Hot-spot thermal explosion in deformed solids [J]. Combustion, Explosion, and Shock Waves, 1993, 29(4): 419-428.
|
|
Bourne N K, Field J E. Explosive ignition by the collapse of cavities [J]. Math Phys Eng Sci, 1999, 455(1987): 2411-2426.
|
|
Bourne N K, Milne A M. The temperature of a shock-collapsed cavity [J]. Math Phys Eng Sci, 2003, 459(2036): 1851-1861.
|
|
Maiden D E, Nutt G L. Hot-spot model for calculating the threshold for shock initiation pyrotechnic mixtures [A]//Proceeding of the Eleventh International Pyrotechnics Seminar [C]. California: Lawrence Livermore National Lab, 1986: 813.
|
|
Boslough M B. A Thermochemical model for shock-induced reactions (heat detonations) in solids [J]. J Chem Phys, 1990, 92(3): 1839-1848.
|
|
Mutz A H. Heterogeneous shock energy deposition in shock wave consolidation of metal powders [D]. California: California Institute of Technology, 1991.
|
|
Boslough M B, Graham A. Submicrosecond shock-induced chemical reactions in solids first real-time observations [J]. Chem Phys Lett, 1985, 21(4-5): 446-452.
|
|
Hornig H, Kruy J W. Shock ignition of pyrotechnic heat powders [A]//Proceeding of the Eleventh International Pyrotechnics Seminar [C]. Vail, Colorado, 1986: 699-719.
|
|
Wang J X. Research of micro-mechanism of energy deposition in explosive consolidation of powders [D]. Dalian: Dalian University of Technology, 2005. (in Chinese)
|
|
王金相. 爆炸粉末烧结的细观沉能机制研究 [D]. 大连: 大连理工大学, 2005.
|
|
Zhang D L, Wang X L. The numerical research of the effects of material parameters on powders explosive consolidation [J]. Explosion and Shock Waves, 1996, 16(2): 105-110. (in Chinese)
|
|
张德良, 王晓林. 粉末爆炸烧结材料参数效应数值研究 [J]. 爆炸与冲击, 1996, 16(2): 105-110.
|
|
Zhang D L. Numerical simulation of explosive compaction of powder [J]. Advances in Mechanics, 1994, 24(1): 37-56. (in Chinese)
|
|
张德良. 粉末材料爆炸压实数值模拟 [J]. 力学进展, 1994, 24(1): 37-56.
|
|
Willamson R L. Parametric studies of dynamic powder consolidation using a particle-level numerical model [J]. J Appl Phys, 1990, 68(3): 1287-1296.
|
|
Meyers M A, Benson D J. Shock consolidation: Microstructurally-based analysis and computational modeling [J]. Acta Mater, 1999, 47(7): 2089-2108.
|
|
Gao J X, Shao B H, Zhang K. A study of the mechanism of consolidating metal powder under explosive-implosive shock waves [J]. J Appl Phys, 1991, 69(11): 7547-7555.
|
|
Bendson M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Comput Meth Appl Mech Eng, 1988, 71: 197-224.
|
|
Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strain rate, temperatures and pressures [J]. Eng Fract Mech, 1985, 21(1): 31-48.
|
|
Johnson G R, Holmquist T J. Strain-rate effects for high-strain-rate computations [J]. J Phys, Ⅳ France, 2006, 134: 391-396.
|
|
Snow C L, Lee C R, Shi Q, et al. Size-dependence of the heat capacity and thermodynamic properties of hematite (-Fe2O3) [J]. J Chem Thermodyn, 2010, 42(9): 1142-1151.
|
|
Marsh S P. LASL Shock Hugoniot Data [Z]. Berkeley, CA: University of California Press, 1980: 166.
|