Volume 23 Issue 1
Apr 2015
Turn off MathJax
Article Contents
HE Hong-Liang. Discussion on the Spallation Behavior Resolved by Free-Surface Velocity Profile[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 1-8 . doi: 10.11858/gywlxb.2009.01.001
Citation: HE Hong-Liang. Discussion on the Spallation Behavior Resolved by Free-Surface Velocity Profile[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 1-8 . doi: 10.11858/gywlxb.2009.01.001

Discussion on the Spallation Behavior Resolved by Free-Surface Velocity Profile

doi: 10.11858/gywlxb.2009.01.001
More Information
  • Corresponding author: HE Hong-Liang
  • Received Date: 27 Jul 2008
  • Rev Recd Date: 05 Jan 2009
  • Issue Publish Date: 15 Feb 2009
  • A few questions on the spallation behavior resolved by the measurement of free-surface velocity profile have been discussed. Firstly, the way from the measured free-surface velocity profile to infer the dynamic damage behavior of the target is an Inverse Problem and the theoretical model and simulation parameters determined by such a solution maybe not represent the real physical nature of spall fracture inside the target. Secondly, how to calculate the spall strength? Due to the attenuation effect of micro-voids or damage on the wave propagation, the spall strength computed from the free-surface velocity profile is apparently lower than the tensile strength suffered by the shocked material. Thirdly, limitation of the traditional single-point measurement on the free-surface velocity profile is briefly reviewed. Given that the shocked target is inhomogeneous, the amplitude of the measured velocity profile is varied from point to point. According to these discussions, future research suggestions have been proposed in order to clearly understand the spallation behavior.

     

  • loading
  • Meyers M A, Aimone C T. Dynamic Fracture (Spalling) of Metals [J]. Progress in Materials Science, 1983, 28: 1-96.
    Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solid [J]. Phys Rep, 1987, 147(56): 253-388.
    Rinehart J S. Some Quantitative Data Bearing on the Scabbing of Metals under Explosive Attack [J]. J Appl Phys, 1951, 22: 555.
    Bread B R, Mader C L, Venable D. Technique for the Determination of Dynamic-Tensile-Strength Characteristics [J]. J Appl Phys, 1967, 38(8): 3271-3275.
    Tuler F R, Butcher B M. A Criterion for the Time Dependence of Dynamic Fracture [J]. Int J Fract Mech, 1968, 4(4): 431-437.
    Davison L, Stevens A L. Continuum Measures of Spall Damage [J]. J Appl Phys, 1972, 43(3): 988-994.
    Bai Y, Han W, Bai J. A Statistical Evolution Equation of Micro-Damage and Its Application [A]//McDowell D L. Applications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM STP 1315 [C].American Society for Testing and Materials, 1997: 150-162.
    Bai J, Xia M F, Ke F J. Properties of the Statistical Damage Evolution Equation and Its Numerical Simulation [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(1): 38-48. (in Chinese)
    白洁, 夏蒙棼, 柯孚久, 等. 损伤统计演化方程的性质和数值模拟 [J]. 力学学报, 1999, 31(1): 38-48.
    Strachan A, Cagin T, Goddard W A Ⅲ. Critical Behavior in Spallation Failure of Metals [J]. Phys Rev B, 2001, 63: 060103.
    Seppala E T, Belak J, Rudd R E. Onset of Void Coalescence during Dynamic Fracture of Ductile Metals [J]. Phys Rev Lett, 2004, 93: 245503.
    Seppala E T, Belak J, Rudd R E. Effect of Stress Triaxiality on Void Growth in Dynamic Fracture of Metals: A Molecular Dynamic Study [J]. Phys Rev B, 2004, 69: 134101.
    Wang Y G, He H L, Wang L L, et al. Time-Resolved Dynamic Tensile Spallation of Pure Aluminum under Laser Irradiation [J]. J Appl Phys, 2006, 100: 033511.
    Wang Y G. Dynamic Tensile Spall of Ductile Metal and Its Critical Damage Evolution Model [D]. Mianyang: CAEP, 2006. (in Chinese)
    王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 绵阳: 中国工程物理研究院, 2006.
    Holtkamp D B, Clark D A, Ferm E N, et al. A Survey of High Explosive-Induced Damage and Spall in Selected Metals Using Proton Radiography [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: Melville, 2004: 477-482.
    Anderson W W, Cverna F, Hixson R S, et al. Phase Transition and Spall Behavior in -Tin [A]//Shock Compression of Condensed Matter-1999 [C]. New York: Melville, 2000: 443-446.
    Bontaz-Carion J, Pellegrini Y P. X-Ray Microtomography Analysis of Dynamic Damage in Tantanlun [J]. Advanced Engineering Materials, 2006, 8(6): 480-486.
    Grady D. Scattering as a Mechanism for Structured Shock Waves in Metals [J]. J Mech Phys Solids, 1998, 46(10): 2017-2032.
    Sun J S, Zhu J S, Jia X R. An Analysis of Compaction Wave in Granular Material [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 423-433. (in Chinese)
    孙锦山, 朱建士, 贾祥瑞. 颗粒材料中致密波结构研究 [J]. 力学学报, 1999, 31(4): 423-433.
    Novikov S A. Spall Strength of Materials under Shock Load [J]. J Appl Mech Tech Phys, 1967, 3: 109-123. (in Russian)
    Stepanov G V, Romanchenko V I, Astanin V V. Experimental Determination of Failure Stresses under Spallation in Elastic-Plastic Waves [J]. Probl Strength, 1977, 8: 96-120. (in Russian)
    Romanchenko V I, Stepanov G V. The Dependence of Critical Stress upon the Time Parameters of Load at Spalling in Copper, Aluminum, and Steel [J]. J Appl Mech Tech Phys, 1980, 21(4): 141-157. (in Russian)
    Pei X Y. Two Dimensional Numerical Simulation of Dynamic Spallation of Steel Plate under Impact and Cylinder under Implosion with Damage Function Model [D]. Mianyang: CAEP, 2005. (in Chinese)
    裴晓阳. 损伤度函数模型用于碰撞和内爆加载下钢层裂的二维数值模拟研究 [D]. 绵阳: 中国工程物理研究院, 2005.
    Qi M L. Critical Behavior in Dynamic Tensile Fracture of High Purity Aluminum [D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese)
    祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉: 武汉理工大学, 2007.
    Liu C L, Ahrens J A. Stress Wave Attenuation in Shock-Damaged Rock [J]. J Geophys Res, 1997, 102(B3): 5243-5250.
    Chhabildas L C, Trott W M, Reinhart W D, et al. Incipient Spall Studies in Tantalum Microstructural Effects [A]//Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: Melville, 2002: 483-486.
    Hanson K M, Hemez F M. Uncertainty Quantification of Simulation Codes Based on Experimental Data [R]. LA-UR-03-0171, 2003.
    McCluskey C W, Wilke M D, Anderson W W, et al. Asay Window: A New Spall Diagnostic [J]. Rev Sci Instrum, 2006, 77: 113902.
    Hixson R S, Vorthman J E, Zurek A K, et al. Spall Response of U-Nb(6%) Alloy [A]//Shock Compression of Condensed Matter-1999 [C]. New York: Melville, 2000: 489-492.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8050) PDF downloads(895) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return