三周期极小曲面结构混合设计及其在冲击载荷下的力学行为

刘嘉婧 李子豪 王志华 刘志芳 李世强

刘嘉婧, 李子豪, 王志华, 刘志芳, 李世强. 三周期极小曲面结构混合设计及其在冲击载荷下的力学行为[J]. 高压物理学报, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783
引用本文: 刘嘉婧, 李子豪, 王志华, 刘志芳, 李世强. 三周期极小曲面结构混合设计及其在冲击载荷下的力学行为[J]. 高压物理学报, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783
LIU Jiajing, LI Zihao, WANG Zhihua, LIU Zhifang, LI Shiqiang. Hybrid Design of Triply Periodic Minimal Surface Structure and Its Mechanical Behavior under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783
Citation: LIU Jiajing, LI Zihao, WANG Zhihua, LIU Zhifang, LI Shiqiang. Hybrid Design of Triply Periodic Minimal Surface Structure and Its Mechanical Behavior under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054102. doi: 10.11858/gywlxb.20240783

三周期极小曲面结构混合设计及其在冲击载荷下的力学行为

doi: 10.11858/gywlxb.20240783
基金项目: 国家自然科学基金(12072219,12272254);山西省自然科学研究面上项目(202203021211170);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2023HA-TYUTKFYF016);山西省科技创新人才团队(领军)专项(202204051002006)
详细信息
    作者简介:

    刘嘉婧(1997-),女,硕士研究生,主要从事轻质材料冲击动力学行为研究.E-mail:liujiajing199709@163.com

    通讯作者:

    李世强(1986-),男,博士,副教授,主要从事结构冲击动力学行为研究. E-mail:lishiqiang@tyut.edu.cn

  • 中图分类号: O521.9; O347.1

Hybrid Design of Triply Periodic Minimal Surface Structure and Its Mechanical Behavior under Impact Loading

  • 摘要: 三周期极小曲面(triply periodic minimal surface,TPMS)结构材料作为一种高孔隙率和高能量吸收效率的多孔介质,在许多领域得到广泛应用。以Gyroid和IWP结构作为设计基元,利用Sigmoid函数构建圆柱形过渡层,将外层IWP结构与内层Gyroid结构连接,设计了内外嵌套的GIP混合胞元结构。通过选择性激光熔融技术打印了Gyroid结构、IWP结构和GIP混合结构试样,并利用直撞式霍普金森杆对其进行了实验研究。结合LS-DYNA软件进行了更大冲击速度范围的数值模拟,分析了试件的变形演化过程和动态应力-应变关系。结果表明:结构的初始峰值应力和比吸能表现出不同程度的应变率敏感性。与Gyroid和IWP结构相比,GIP混合结构材料的应力-应变曲线表现出更明显的应变硬化趋势和更强的能量吸收能力。相较于GIP-1结构(冲击方向与圆柱形过渡层轴线方向相同),随着冲击速度的提高,GIP-2结构(冲击方向与圆柱形过渡层轴线方向垂直)具有更低的初始峰值应力和更大的比吸能,因而具有更优异的抗冲击性能。

     

  • 图  2种TPMS单胞构型

    Figure  1.  Single-cell configurations of two TPMSs

    图  水平集常数与相对密度的关系

    Figure  2.  Level set constants versus relative densities

    图  试件的几何模型

    Figure  3.  Geometric modeling of the specimens

    图  SLM打印试样

    Figure  4.  SLM printed specimens

    图  SLM打印标准件在单轴拉伸下的应力-应变曲线

    Figure  5.  Stress-strain curves of SLM-printed standard parts in uniaxial tension

    图  直撞式霍普金森杆实验布局

    Figure  6.  Direct impact Hopkinson bar experiment setup

    图  实验与数值模拟验证

    Figure  7.  Experimental and numerical simulation validation

    图  50 m/s冲击加载下单一结构和混合结构的实验与模拟变形模态

    Figure  8.  Deformation modes of experiment and simulation for single and hybrid structures under 50 m/s impact loading

    图  50 m/s冲击加载下GIP-1结构的1/2有限元模型剖面

    Figure  9.  1/2 finite element model section of GIP-1 structure at 50 m/s impact loading

    图  10  不同加载速度下结构的应力-应变曲线

    Figure  10.  Stress-strain curves of structures with different loading velocities

    图  11  单一结构和混合结构的能量吸收效率曲线和密实化应变

    Figure  11.  Energy absorption efficiency curves and densification strains for single structures and hybrid structures

    图  12  加载速度对初始峰值应力和比吸能的影响

    Figure  12.  Effect of loading velocity on initial peak stress and specific energy absorption

    图  13  加载速度对归一化参数的影响

    Figure  13.  Effect of loading velocity on normalized parameters

    表  1  测试试样的质量

    Table  1.   Masses of test specimens

    Specimen Designed
    mass/g
    Specimen
    mass/g
    Mass
    deviation/%
    Designed relative
    density/%
    Relative density
    of specimen/%
    Relative density
    deviation/%
    Gyroid-1 38.96 40.52 4.00 36 37.43 3.97
    Gyroid-2 38.96 40.35 3.56 36 37.27 3.52
    IWP-1 38.96 40.21 3.20 36 37.14 3.16
    IWP-2 38.96 40.12 2.97 36 37.06 2.94
    GIP-1 38.96 40.65 4.33 36 37.55 4.30
    GIP-2 38.96 40.37 3.61 36 37.29 3.58
    下载: 导出CSV
  • [1] ZHANG J W, ZHAO J X, RONG Q G, et al. Machine learning guided prediction of mechanical properties of TPMS structures based on finite element simulation for biomedical titanium [J]. Materials Technology, 2022, 37(1): 1–8.
    [2] CHATZIGEORGIOU C, PIOTROWSKI B, CHEMISKY Y, et al. Numerical investigation of the effective mechanical properties and local stress distributions of TPMS-based and strut-based lattices for biomedical applications [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 105025. doi: 10.1016/j.jmbbm.2021.105025
    [3] ZHANG S N, DA D, WANG Y J. TPMS-infill MMC-based topology optimization considering overlapped component property [J]. International Journal of Mechanical Sciences, 2022, 235: 107713. doi: 10.1016/j.ijmecsci.2022.107713
    [4] SANTIAGO R, RAMOS H, ALMAHRI S, et al. Modelling and optimisation of TPMS-based lattices subjected to high strain-rate impact loadings [J]. International Journal of Impact Engineering, 2023, 177: 104592. doi: 10.1016/j.ijimpeng.2023.104592
    [5] 冯根柱, 于博丽, 李世强, 等. 多层级夹芯结构的变形与能量吸收 [J]. 高压物理学报, 2019, 33(5): 055902.

    FENG G Z, YU B L, LI S Q, et al. Deformation and energy absorption of multi-hierarchical sandwich structures [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902.
    [6] FENG J W, FU J Z, SHANG C, et al. Porous scaffold design by solid T-splines and triply periodic minimal surfaces [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336: 333–352. doi: 10.1016/j.cma.2018.03.007
    [7] LIU B, LIU M Y, CHENG H Q, et al. A new stress-driven composite porous structure design method based on triply periodic minimal surfaces [J]. Thin-Walled Structures, 2022, 181: 109974. doi: 10.1016/j.tws.2022.109974
    [8] FENG J W, LIU B, LIN Z W, et al. Isotropic porous structure design methods based on triply periodic minimal surfaces [J]. Materials & Design, 2021, 210: 110050.
    [9] WANG H, TAN D W, LIU Z P, et al. On crashworthiness of novel porous structure based on composite TPMS structures [J]. Engineering Structures, 2022, 252: 113640. doi: 10.1016/j.engstruct.2021.113640
    [10] ZHANG L, FEIH S, DAYNES S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading [J]. Additive Manufacturing, 2018, 23: 505–515. doi: 10.1016/j.addma.2018.08.007
    [11] AL-KETAN O, ROWSHAN R, ABU AL-RUB R K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J]. Additive Manufacturing, 2018, 19: 167–183. doi: 10.1016/j.addma.2017.12.006
    [12] LI X, XIAO L J, SONG W D. Compressive behavior of selective laser melting printed gyroid structures under dynamic loading [J]. Additive Manufacturing, 2021, 46: 102054. doi: 10.1016/j.addma.2021.102054
    [13] NAZIR A, HUSSAIN S, ALI H M, et al. Design and mechanical performance of nature-inspired novel hybrid triply periodic minimal surface lattice structures fabricated using material extrusion [J]. Materials Today Communications, 2024, 38: 108349. doi: 10.1016/j.mtcomm.2024.108349
    [14] LI S, ZHU H, FENG G, et al. Influence mechanism of cell-arrangement strategy on energy absorption of dual-phase hybrid lattice structure [J]. International Journal of Impact Engineering, 2023, 175: 104528. doi: 10.1016/j.ijimpeng.2023.104528
    [15] YU G J, XIAO L J, SONG W D. Deep learning-based heterogeneous strategy for customizing responses of lattice structures [J]. International Journal of Mechanical Sciences, 2022, 229: 107531. doi: 10.1016/j.ijmecsci.2022.107531
    [16] ZHANG J, XIE S, LI T, et al. A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices [J]. Thin-Walled Structures, 2023, 190: 110989. doi: 10.1016/j.tws.2023.110989
    [17] SREEDHAR N, THOMAS N, AL-KETAN O, et al. Mass transfer analysis of ultrafiltration using spacers based on triply periodic minimal surfaces: effects of spacer design, directionality and voidage [J]. Journal of Membrane Science, 2018, 561: 89–98. doi: 10.1016/j.memsci.2018.05.028
    [18] AL-KETAN O, ABU AL-RUB R K. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces [J]. Material Design & Processing Communications, 2021, 3(6): e205.
    [19] MASKERY I, STURM L, AREMU A O, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing [J]. Polymer, 2018, 152: 62–71. doi: 10.1016/j.polymer.2017.11.049
    [20] YIN H F, ZHENG X J, WEN G L, et al. Design optimization of a novel bio-inspired 3D porous structure for crashworthiness [J]. Composite Structures, 2021, 255: 112897. doi: 10.1016/j.compstruct.2020.112897
    [21] NOVAK N, TANAKA S, HOKAMOTO K, et al. High strain rate mechanical behaviour of uniform and hybrid metallic TPMS cellular structures [J]. Thin-Walled Structures, 2023, 191: 111109. doi: 10.1016/j.tws.2023.111109
    [22] 厉雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应 [J]. 高压物理学报, 2021, 35(3): 034201.

    LI X, XIAO L J, SONG W D. Dynamic behavior of 3D printed graded gyroid structures under impact loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 034201.
    [23] 李吉祥. 基于三周期极小曲面的三维点阵结构的防护性能研究 [D]. 泉州: 华侨大学, 2023.

    LI J X. Study on protective performance of three-dimensional lattice structures based on triply periodic minimal surfaces [D]. Quanzhou: Huaqiao University, 2023.
    [24] DUAN Y, DU B, SHI X P, et al. Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells [J]. International Journal of Impact Engineering, 2019, 132: 103303. doi: 10.1016/j.ijimpeng.2019.05.017
    [25] XI H, ZHOU Z, ZHANG H, et al. Multi-morphology TPMS structures with multi-stage yield stress platform and multi-level energy absorption: design, manufacturing, and mechanical properties [J]. Engineering Structures, 2023, 294: 116733. doi: 10.1016/j.engstruct.2023.116733
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  44
  • PDF下载量:  20
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-04-23
  • 录用日期:  2024-06-19
  • 网络出版日期:  2024-08-13
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回