冲击加载-卸载-再加载条件下Cr-Ni-Mo钢的层裂损伤

洪逸非 李绪海 吴凤超 张昭国 张建 陈森 王媛 俞宇颖 胡建波

洪逸非, 李绪海, 吴凤超, 张昭国, 张建, 陈森, 王媛, 俞宇颖, 胡建波. 冲击加载-卸载-再加载条件下Cr-Ni-Mo钢的层裂损伤[J]. 高压物理学报, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757
引用本文: 洪逸非, 李绪海, 吴凤超, 张昭国, 张建, 陈森, 王媛, 俞宇颖, 胡建波. 冲击加载-卸载-再加载条件下Cr-Ni-Mo钢的层裂损伤[J]. 高压物理学报, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757
HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757
Citation: HONG Yifei, LI Xuhai, WU Fengchao, ZHANG Zhaoguo, ZHANG Jian, CHEN Sen, WANG Yuan, YU Yuying, HU Jianbo. Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054101. doi: 10.11858/gywlxb.20240757

冲击加载-卸载-再加载条件下Cr-Ni-Mo钢的层裂损伤

doi: 10.11858/gywlxb.20240757
基金项目: 国家重点研发计划(2021YFB3802303)
详细信息
    作者简介:

    洪逸非(1999-),男,硕士研究生,主要从事材料动态力学行为研究. E-mail:317422@whut.edu.cn

    通讯作者:

    李绪海(1985-),男,博士,助理研究员,主要从事冲击波物理研究. E-mail:lixuhai@caep.cn

    胡建波(1980-),男,博士,研究员,主要从事高压物理与力学研究. E-mail:jianbo.hu@caep.cn

  • 中图分类号: O346.4; O521.2

Spall Damage of Cr-Ni-Mo Steel under Shock-Release-Reloading Conditions

  • 摘要: 基于一级轻气炮加载技术,利用不同类型的多层复合飞片,实现了冲击加载-卸载-再加载路径,结合回收表征以及一维流体力学模拟,对Cr-Ni-Mo钢在冲击加载-卸载-再加载路径下的层裂损伤行为进行了深入研究。结果表明,在冲击加载-卸载-再加载路径下,层裂面会重新闭合并形成微损伤带,而孔洞位置仍然位于原奥氏体边界和板条群边界处,裂纹仍保持穿晶+沿晶的混合断裂模式。此外,第1层飞片与样品之间存在的较大阻抗差异会导致自由面速度中的再加载信号缺失。这些发现为深入理解Cr-Ni-Mo钢在复杂加载路径下的层裂行为提供了重要参考。

     

  • 图  马氏体钢原始样的显微组织表征

    Figure  1.  Microstructural characterizations of the martensitic steel

    图  平板撞击实验装置示意图

    Figure  2.  Schematic diagram of the plate-impact experiment setup

    图  用于层裂和层裂再压缩的实验构型(通过“高-低-高”阻抗组合飞片设计实现对样品的冲击加载-卸载-再加载,样品为Co-Ni-Mo低合金马氏体钢)

    Figure  3.  Layered flyers composed of high-low-high impedance materials for spall and spall recompression experiments(Sample: Co-Ni-Mo low alloy martensitic steel)

    图  不同飞片加载下的自由面速度历史

    Figure  4.  Free surface velocity histories of experiments with different flyers

    图  (a) 回收样品整体光学显微镜照片,(b)~(d) Shot 1、Shot 2 和Shot 3的局部光学显微照片

    Figure  5.  (a) Optical microscope photographs of the recovered samples; (b)−(d) zoom-in views for Shot 1, Shot 2 and Shot 3

    图  沿撞击方向不同位置的损伤度分布

    Figure  6.  Damage degree as a function of distance from the impact surface for different shots

    图  不同类型飞片加载后马氏体钢的显微组织:(a)~(c) Shot 1中样品的局部SEM照片及其对应的IPF图和KAM图,(d)~(f) Shot 2中样品的局部SEM照片及其对应的IPF图和KAM图,(g)~(i) Shot 3中样品的局部SEM照片及其对应的IPF图和KAM图

    Figure  7.  Microstructural characteristics of the recovered samples for different shots: (a)−(c) SEM micrograph and its IPF and KAM maps of shot 1; (d)−(f) SEM micrograph and its IPF and KAM maps of shot 2; (g)−(i) SEM micrograph and its IPF and KAM maps of shot 3

    图  一维流体力学模拟结果

    Figure  8.  One-dimensional hydrodynamics simulation results

    表  1  平板撞击实验参数及结果

    Table  1.   Parameters and results of plate-impact experiments

    Shot No. Flyer df/mm ds/mm uimp/(m·s−1) σH/GPa σsp/GPa
    1 Cu/PC/Ta 0.51/0.40/0.50 1.21 604 9.34 5.79
    2 Ta/PC/Ta 0.50/0.39/0.50 1.20 600 12.27 5.82
    3 Cu 0.50 1.19 600 9.32 5.48
    下载: 导出CSV

    表  2  Cr-Ni-Mo钢的Mie-Grüneisen状态方程参数

    Table  2.   Mie-Grüneisen EOS parameters for Cr-Ni-Mo steel

    ρ0/(g·cm−3)c/(km·s−1)S1γ0S2S3
    7.784.691.491.9300
    下载: 导出CSV

    表  3  Cr-Ni-Mo钢的Steinberg-Guinan本构模型参数

    Table  3.   Steinberg-Guinan constitutive model parameters for Cr-Ni-Mo steel

    Y0/GPa Ymax/GPa G0/GPa β n $ {G}'_{{p}} $ $ {G}'_{{T}} $/(GPa·K−1) $ {Y}'_{{p}} $
    1.5 3 77 43 0.35 1.74 −3.5×10−3 7.7×10−3
    下载: 导出CSV
  • [1] DU Y F, LU H H, SHEN X Q. Coupled effects of banded structure and carbide precipitation on mechanical performance of Cr-Ni-Mo-V steel [J]. Materials Science and Engineering: A, 2022, 832: 142478. doi: 10.1016/j.msea.2021.142478
    [2] HAI C, ZHU Y T, FAN E D, et al. Effects of the microstructure and reversed austenite on the hydrogen embrittlement susceptibility of Ni-Cr-Mo-V/Nb high-strength steel [J]. Corrosion Science, 2023, 218: 111164. doi: 10.1016/j.corsci.2023.111164
    [3] ZHAO X Y, LI H J. Experimental study on the dynamic behavior of a Cr-Ni-Mo-V steel under different shock stresses [J]. Metals, 2023, 13(4): 663. doi: 10.3390/met13040663
    [4] MAROPOULOS S, RIDLEY N, KARAGIANNIS S. Structural variations in heat treated low alloy steel forgings [J]. Materials Science and Engineering: A, 2004, 380(1/2): 79–92. doi: 10.1016/j.msea.2004.03.053
    [5] JONES D R, FENSIN S J, NDEFRU B G, et al. Spall fracture in additive manufactured tantalum [J]. Journal of Applied Physics, 2018, 124(22): 225902. doi: 10.1063/1.5063930
    [6] ZHANG N B, XU J, FENG Z D, et al. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi [J]. Journal of Materials Science & Technology, 2022, 128: 1–9. doi: 10.1016/j.jmst.2022.02.056
    [7] 蔡洋, 李超, 卢磊. 冲击载荷下金属材料的微结构-加载特性-层裂响应关系概述 [J]. 高压物理学报, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648

    CAI Y, LI C, LU L. Effects of microstructure and loading characteristics on spallation of metallic materials under shock loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648
    [8] LI C, LI B, HUANG J Y, et al. Spall damage of a mild carbon steel: effects of peak stress, strain rate and pulse duration [J]. Materials Science and Engineering: A, 2016, 660: 139–147. doi: 10.1016/j.msea.2016.02.080
    [9] LI C, YANG K, TANG X C, et al. Spall strength of a mild carbon steel: effects of tensile stress history and shock-induced microstructure [J]. Materials Science and Engineering: A, 2019, 754: 461–469. doi: 10.1016/j.msea.2019.03.019
    [10] LI C, HUANG J Y, TANG X C, et al. Effects of structural anisotropy on deformation and damage of a duplex stainless steel under high strain rate loading [J]. Materials Science and Engineering: A, 2017, 705: 265–272. doi: 10.1016/j.msea.2017.08.091
    [11] EUSER V K, JONES D R, MARTINEZ D T, et al. The effect of microstructure on the dynamic shock response of 1045 steel [J]. Acta Materialia, 2023, 250: 118874. doi: 10.1016/j.actamat.2023.118874
    [12] BECKER R, LEBLANC M M, CAZAMIAS J U. Characterization of recompressed spall in copper gas gun targets [J]. Journal of Applied Physics, 2007, 102(9): 093512. doi: 10.1063/1.2802589
    [13] JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127(24): 245901. doi: 10.1063/5.0011337
    [14] HAWKINS M C, THOMAS S A, FENSIN S J, et al. Spall and subsequent recompaction of copper under shock loading [J]. Journal of Applied Physics, 2020, 128(4): 045902. doi: 10.1063/5.0011645
    [15] GRAY G T, BOURNE N K, LIVESCU V, et al. The influence of shock-loading path on the spallation response of Ta [J]. Journal of Physics: Conference Series, 2014, 500(11): 112031. doi: 10.1088/1742-6596/500/11/112031
    [16] YU L, XIAO X Z, CHEN L R, et al. A hierarchical theoretical model for mechanical properties of lath martensitic steels [J]. International Journal of Plasticity, 2018, 111: 135–151. doi: 10.1016/j.ijplas.2018.07.012
    [17] 李英华, 常敬臻, 张林, 等. 氦泡铝的层裂特性实验研究 [J]. 高压物理学报, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770

    LI Y H, CHANG J Z, ZHANG L, et al. Experimental investigation of spall damage in pure aluminum with helium bubbles [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054101. doi: 10.11858/gywlxb.20210770
    [18] KANEL G I, UTKIN A V. Estimation of the spall fracture kinetics from the free-surface velocity profiles [J]. AIP Conference Proceedings, 1996, 371(1): 487–490. doi: 10.1063/1.50685
    [19] ZHANG N B, LIU Q, YANG K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. International Journal of Mechanical Sciences, 2022, 213: 106858. doi: 10.1016/j.ijmecsci.2021.106858
    [20] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191. doi: 10.1007/s10704-009-9438-0
    [21] QI M L, BIE B X, ZHAO F P, et al. A metallography and X-ray tomography study of spall damage in ultrapure Al [J]. AIP Advances, 2014, 4(7): 077118. doi: 10.1063/1.4890310
    [22] CHENG J C, QIN H L, LI C, et al. Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading [J]. Materials Science and Engineering: A, 2023, 862: 144432. doi: 10.1016/j.msea.2022.144432
    [23] 孙毅, 向士凯, 耿华运, 等. 自动校准的多相状态方程建模方法及其在锡中的应用 [J]. 高压物理学报, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709

    SUN Y, XIANG S K, GENG H Y, et al. Automated calibrated modeling method of multiphase equations of states: applied to tin [J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 021301. doi: 10.11858/gywlxb.20220709
    [24] WU F C, LI X H, SUN Y, et al. Multi-phase modeling on spall and recompression process of tin under double shockwaves [J]. The International Conference on Computational & Experimental Engineering and Sciences, 2023, 26(3): 1. doi: 10.32604/icces.2023.09320
    [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 45–47.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 45–47.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  42
  • PDF下载量:  31
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-07
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回