人造结石的静动态巴西劈裂试验研究

顾春苗 刘冠琳 周风华 李科斌

顾春苗, 刘冠琳, 周风华, 李科斌. 人造结石的静动态巴西劈裂试验研究[J]. 高压物理学报, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738
引用本文: 顾春苗, 刘冠琳, 周风华, 李科斌. 人造结石的静动态巴西劈裂试验研究[J]. 高压物理学报, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738
GU Chunmiao, LIU Guanlin, ZHOU Fenghua, LI Kebin. Study on Static and Dynamic Brazilian Splitting Test of Artificial Stones[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738
Citation: GU Chunmiao, LIU Guanlin, ZHOU Fenghua, LI Kebin. Study on Static and Dynamic Brazilian Splitting Test of Artificial Stones[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054105. doi: 10.11858/gywlxb.20240738

人造结石的静动态巴西劈裂试验研究

doi: 10.11858/gywlxb.20240738
基金项目: 国家自然科学基金(12202217);宁波市自然科学基金(2021J122)
详细信息
    作者简介:

    顾春苗(1996- ),男,硕士研究生,主要从事冲击动力学研究. E-mail:gcm842343496@foxmail.com

    通讯作者:

    李科斌(1988- ),男,博士,讲师,主要从事冲击动力学、生物力学研究. E-mail:likebin@nbu.edu.cn

  • 中图分类号: O521.3; O347

Study on Static and Dynamic Brazilian Splitting Test of Artificial Stones

  • 摘要: 为探讨人造结石在不同条件下的力学性能,制备了不同配比(硬度、孔隙率、粉水比、蛋白含量)的牙科石膏试样(人造结石),对其开展准静态巴西劈裂试验,并利用$\varnothing$40 mm 分离式霍普金森压杆进行动态加载,结合高速相机、数字图像相关等测试方法观察试样在劈裂过程中的破坏过程以及应变场演化规律,获得应变时程曲线。试验结果表明:人造结石的准静态拉伸强度与硬度、粉水比成正比,与孔隙率成反比,而蛋白质含量对拉伸强度的影响不大,但会影响其韧脆性。在动态加载下,人造结石试样具有明显的应变率强化效应,拉伸强度动态增强因子与应变率对数之间呈线性增长关系。研究方法为人造结石的力学特性研究提供了一种有效的实验方法和分析手段。

     

  • 图  弧形加载装置

    Figure  1.  Arc loading device

    图  动态巴西劈裂试验计算模型

    Figure  2.  Calculation model of dynamic Brazilian splitting test

    图  不同硬度的牙科石膏试件

    Figure  3.  Dental plaster sample with different hardnesses

    图  准静态巴西劈裂测试系统

    Figure  4.  Quasi-static Brazilian splitting test system

    图  动态巴西劈裂试验装置示意图

    Figure  5.  Schematic diagram of dynamic Brazilian splitting test device

    图  试样2-4-1的加载时程曲线

    Figure  6.  Loading-time curve of specimen 2-4-1

    图  试样2-4-1的裂纹扩展过程

    Figure  7.  Crack growth process of specimen 2-4-1

    图  不同参数条件下人造结石的抗拉强度变化

    Figure  8.  Changes in tensile strength of artificial stones under different variables

    图  试样2-4-1的表面应变场演化云图

    Figure  9.  Evolution of surface strain field of specimen 2-4-1

    图  10  试样2-4-1中心位置的拉伸应变时程曲线

    Figure  10.  Strain-time curve at the center of specimen 2-4-1

    图  11  试样2-4-1的应力-应变曲线

    Figure  11.  Stress-strain curves of specimen 2-4-1

    图  12  应力平衡检验结果

    Figure  12.  Stress balance test results

    图  13  动态巴西劈裂破坏过程

    Figure  13.  Dynamic Brazilian splitting failure process

    图  14  不同冲击气压下试样的应变时程曲线

    Figure  14.  Strain-time curves under different air pressure

    图  15  动态抗拉强度的应变率效应

    Figure  15.  Strain rate effects on dynamic tensile strength

    表  1  草酸钙结石和BegoStone石膏的部分物理参数[8]

    Table  1.   Some physical parameters of calcium oxalate stones and BegoStone[8]

    Material CL/(m·s–1) CT/(m·s–1) ρ/(kg·m³) ZL/(kg∙m−2∙s−1) ZT/(kg∙m−2∙s−1) μ E/GPa K/GPa G/GPa
    COM 4476±41 2247±16 1823±69 8.160 4.096 0.332 24.259 9.204 9.204
    BegoStone 4400±65 2271±18 2174±29 9.568 4.939 0.318 29.584 30.890 11.221
    下载: 导出CSV

    表  2  试样的分组情况

    Table  2.   Sample details list

    Hardness/MPa Porosity/%
    1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4
    60 100 220 300 5 15 20 25
    Protein content/% Powder-to-water ratio
    3-1 3-2 3-3 3-4 3-5 4-1 4-2 4-3 4-4
    1.0 1.5 2.0 2.5 3.0 6.0∶1 5.0∶1 4.0∶1 3.5∶1
    下载: 导出CSV

    表  3  动态加载试验中试样的物理参数

    Table  3.   Physical parameters of specimen in dynamic loading test

    Density/
    (kg·m–3)
    E/GPa Hardness/
    MPa
    Powder to
    water ratio
    Porosity/%
    Tensile
    strength/MPa
    Compressive
    strength/MPa
    2264.80 31 300 6.0∶1 5 4.64 44.29
    下载: 导出CSV

    表  4  试样的的动态巴西劈裂试验结果

    Table  4.   Dynamic Brazilian splitting test results of specimen

    Specimen No. Air pressure/MPa Tensile strength/MPa Average tensile strength/MPa
    1-1 0.2 13.47
    1-2 0.2 13.61 13.46
    1-3 0.2 13.30
    2-1 0.4 20.60
    2-2 0.4 18.78 20.30
    2-3 0.4 21.51
    3-1 0.6 29.23
    3-2 0.6 27.11 28.20
    3-3 0.6 28.26
    下载: 导出CSV
  • [1] 孙西钊. 冲击波碎石原理与应用 [M]. 北京: 中国科学技术出版社, 2019: 16−23.
    [2] LOSKE A M. Medical and biomedical applications of shock waves [M]. Cham: Springer, 2017: 5−18.
    [3] RASSWEILER J J, TAILLY G G, CHAUSSY C. Progress in lithotriptor technology [J]. EAU Update Series, 2005, 3(1): 17–36. doi: 10.1016/j.euus.2004.11.003
    [4] EISENMENGER W. The mechanisms of stone fragmentation in ESWL [J]. Ultrasound in Medicine & Biology, 2001, 27(5): 683–693. doi: 10.1016/S0301-5629(01)00345-3
    [5] ZHU S L, COCKS F H, PREMINGER G M, et al. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy [J]. Ultrasound in Medicine & Biology, 2002, 28(5): 661–671. doi: 10.1016/S0301-5629(02)00506-9
    [6] XI X F, ZHONG P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2001, 109(3): 1226–1239. doi: 10.1121/1.1349183
    [7] CLEVELAND R O, SAPOZHNIKOV O A. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2005, 118(4): 2667–2676. doi: 10.1121/1.2032187
    [8] LIU Y B, ZHONG P. BegoStone—a new stone phantom for shock wave lithotripsy research (L) [J]. The Journal of the Acoustical Society of America, 2002, 112(4): 1265–1268. doi: 10.1121/1.1501905
    [9] MCATEER J A, WILLIAMS J C JR, CLEVELAND R O, et al. Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy [J]. Urological Research, 2005, 33(6): 429–434. doi: 10.1007/s00240-005-0503-5
    [10] ESCH E, SIMMONS W N, SANKIN G, et al. A simple method for fabricating artificial kidney stones of different physical properties [J]. Urological Research, 2010, 38(4): 315–319. doi: 10.1007/s00240-010-0298-x
    [11] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 423–439. doi: 10.1016/j.ijrmms.2013.01.005
    [12] SAPOZHNIKOV O A, MAXWELL A D, MACCONAGHY B, et al. A mechanistic analysis of stone fracture in lithotripsy [J]. The Journal of the Acoustical Society of America, 2007, 121(2): 1190–1202. doi: 10.1121/1.2404894
    [13] JOHRDE L G, COCKS F H. Fracture strength studies of renal calculi [J]. Journal of Materials Science Letters, 1985, 4(10): 1264–1265. doi: 10.1007/bf00723476
    [14] CHUONG C J, ZHONG P, PREMINGER G M. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy [J]. Journal of Endourology, 1993, 7(6): 437–444. doi: 10.1089/end.1993.7.437
    [15] ZHONG P, CHUONG C J, PREMINGER G M. Characterization of fracture toughness of renal calculi using a microindentation technique [J]. Journal of Materials Science Letters, 1993, 12(18): 1460–1462. doi: 10.1007/bf00591608
    [16] BERENBAUM R, BRODIE L. Measurement of the tensile strength of brittle materials [J]. British Journal of Applied Physics, 1959, 10(6): 281. doi: 10.1088/0508-3443/10/6/307
    [17] 叶剑红, 杨洋, 常中华, 等. 巴西劈裂试验应力场解析解应力函数解法 [J]. 工程地质学报, 2009, 17(4): 528–532. doi: 10.3969/j.issn.1004-9665.2009.04.015

    YE J H, YANG Y, CHANG Z H, et al. Airy stress function method for analytic solution of stress field during Brazilian disc test [J]. Journal of Engineering Geology, 2009, 17(4): 528–532. doi: 10.3969/j.issn.1004-9665.2009.04.015
    [18] МУСХЕЛИШВИЛИ Н И. 数学弹性力学的几个基本问题 [M]. 赵惠元, 译. 北京: 科学出版社, 1958: 249–251.
    [19] TIMOSHENKO S P, GOODIER J N. 弹性理论 [M]. 徐芝纶, 译. 北京: 高等教育出版社, 1990: 140–143.
    [20] ISRM. Suggested methods for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99–103. doi: 10.1016/0148-9062(78)90003-7
    [21] KOURKOULIS S K, MARKIDES C F, CHATZISTERGOS P E. The standardized Brazilian disc test as a contact problem [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 132–141. doi: 10.1016/j.ijrmms.2012.07.016
    [22] YU Y, ZHANG J X, ZHANG J C. A modified Brazilian disk tension test [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 421–425. doi: 10.1016/j.ijrmms.2008.04.008
    [23] HONDROS G. The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete [J]. Australian Journal of Applied Science, 1959, 10(3): 243–268.
    [24] MA C C, HUNG K M. Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions [J]. International Journal of Mechanical Sciences, 2008, 50(2): 275–292. doi: 10.1016/j.ijmecsci.2007.06.005
    [25] 王启智, 李炼, 吴礼舟, 等. 改进巴西试验: 从平台巴西圆盘到切口巴西圆盘 [J]. 力学学报, 2017, 49(4): 793–801. doi: 10.6052/0459-1879-17-031

    WANG Q Z, LI L, WU L Z, et al. Improvement of Brazilian test: from flattened Brazilian disc to grooved Brazilian disc [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 793–801. doi: 10.6052/0459-1879-17-031
    [26] AWAJI H, SATO S. Diametral compressive testing method [J]. Journal of Engineering Materials and Technology, 1979, 101(2): 139–147. doi: 10.1115/1.3443665
    [27] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 52–60.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 52–60.
    [28] SIMMONS W N, COCKS F H, ZHONG P, et al. A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 130–133. doi: 10.1016/J.JMBBM.2009.08.004
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  36
  • PDF下载量:  13
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-03-20
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回