近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究

常笑康 罗本永 陈长海 程远胜

常笑康, 罗本永, 陈长海, 程远胜. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究[J]. 高压物理学报, 2024, 38(5): 054103. doi: 10.11858/gywlxb.20240732
引用本文: 常笑康, 罗本永, 陈长海, 程远胜. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究[J]. 高压物理学报, 2024, 38(5): 054103. doi: 10.11858/gywlxb.20240732
CHANG Xiaokang, LUO Benyong, CHEN Changhai, CHENG Yuansheng. Study on the Blast-Resistant Performance and Influence Factors of High-Toughness Steel Subjected to Close-Range Air-Blasts[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. doi: 10.11858/gywlxb.20240732
Citation: CHANG Xiaokang, LUO Benyong, CHEN Changhai, CHENG Yuansheng. Study on the Blast-Resistant Performance and Influence Factors of High-Toughness Steel Subjected to Close-Range Air-Blasts[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. doi: 10.11858/gywlxb.20240732

近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究

doi: 10.11858/gywlxb.20240732
基金项目: 国家自然科学基金(52271317);中央高校基本科研业务费专项资金(2019kfyXJJS007)
详细信息
    作者简介:

    常笑康(1998-),男,硕士研究生,主要从事舰船结构抗爆抗冲击研究. E-mail:2069018105@qq.com

    通讯作者:

    陈长海(1985-),男,博士,副研究员,博士生导师,主要从事舰船结构抗爆防护研究.E-mail:chenchanghai@hust.edu.cn

  • 中图分类号: O389; O521.9; U663

Study on the Blast-Resistant Performance and Influence Factors of High-Toughness Steel Subjected to Close-Range Air-Blasts

  • 摘要: 为探讨高韧钢的抗爆性能及其影响因素,结合空爆试验,对高韧钢平板和加筋板的动响应过程进行了数值模拟,并与相同厚度的高强钢进行了对比。首先,开展了高韧钢和高强钢平板的空爆试验,对比分析了2种材料平板的变形和破坏试验结果。随后,采用LS-DYNA非线性有限元程序对高韧钢平板在近距空爆载荷作用下的变形/失效过程进行了数值模拟,并与试验结果进行了对比,验证了数值模拟方法的合理性。在此基础上,通过数值模拟进一步分析了高韧钢平板和加筋板结构的动态响应过程和失效机理。研究结果表明,在TNT药量为1 200 g、爆距为100 mm的近距空爆载荷作用下,10 mm厚的高韧钢平板仅发生拉伸大变形,而10 mm厚的高强钢平板中部出现大破口。高韧钢平板的抗爆性能明显优于同等厚度下的高强钢平板。近距离空爆载荷作用下,高韧钢平板的主要变形模式为整体拉伸变形,而高韧钢加筋板结构的主要破坏模式为沿加筋部位的剪切破坏。随着载荷强度的增大,高韧钢加筋板结构呈现出3种不同的失效破坏模式;随着加筋高度的增大,面板沿加筋的局部剪切应力更大,高韧钢加筋板的抗爆性能反而会劣化。研究结果展示了高韧钢的抗爆优势,可为高韧钢在舰船防护结构中的潜在应用提供技术支撑。

     

  • 图  近距空爆试验设计

    Figure  1.  Setup of close-range air-blast experiment

    图  准静态拉伸试验结果

    Figure  2.  Quasi-static tensile test results

    图  工况1与工况2的试验结果对比

    Figure  3.  Comparison of test results for case 1 and case 2

    图  工况3中高韧钢方形板的破坏形貌

    Figure  4.  Damage morphology of high-toughness square plate in case 3

    图  有限元模型

    Figure  5.  Finite element model

    图  工况1中高韧钢平板的动响应数值模拟结果

    Figure  6.  Simulation dynamic response of high-toughness plate for test case 1

    图  工况1中高韧钢矩形板变形轮廓的对比

    Figure  7.  Comparison of deflection profiles for high-toughness steel in case 1

    图  高韧钢方形板单元选取位置

    Figure  8.  Elements selected in high-toughness steel square plate

    图  高韧钢方形板各单元应变时程曲线

    Figure  9.  Strain time-history curves of elements in high-toughness steel square plate

    图  10  高韧钢加筋板动响应的模拟结果

    Figure  10.  Simulation results of dynamic response of high-toughness stiffened plate

    图  11  高韧钢加筋板的单元选取位置

    Figure  11.  Elements selected in high-toughness steel stiffened plate

    图  12  高韧钢加筋板各单元应变时程曲线

    Figure  12.  Strain time-history curves of elements in high-toughness steel stiffened plate

    图  13  不同加筋高度的高韧钢加筋板的变形和破坏形貌(TNT药量1 200 g、爆距100 mm)

    Figure  13.  Deformation and damage morphologies of high-toughness steel stiffened plate with different stiffener height (TNT charge 1 200 g, stand-off distance 100 mm)

    图  14  不同近距空爆情形下高韧钢加筋板的变形和破坏形貌

    Figure  14.  Deformation and damage morphologies of high-toughness steel stiffened plate under different close-range air-blast conditions

    图  15  高韧钢加筋板中部应变随药量的变化

    Figure  15.  Variation of strains at the central region of high-toughness stiffened plates with charge masses

    表  1  高韧钢和高强钢材料的基本力学参数

    Table  1.   Basic mechanical parameters of high-toughness (HT) and high-strength (HS) steels

    Materialρ/(kg∙m−3)E/GPaνσs/MPaεf
    HS steel7 8302100.306600.18
    HT steel7 6501900.263300.58
    下载: 导出CSV

    表  2  数值模拟采用的高韧钢材料参数

    Table  2.   Material parameters used in numerical simulation for high-toughness steel

    ρ/(kg∙m−3)E/GPaνG/GPaA/MPaB/MPancmTm/KTr/K
    76501900.2675.43301 5020.790.00101 765300
    下载: 导出CSV
  • [1] 辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势 [J]. 战术导弹技术, 2016(6): 105–110.

    XIN C L, WANG J L, XUE Z Q, et al. Review on status and development of antiship missile warhead [J]. Tactical Missile Technology, 2016(6): 105–110.
    [2] 李营, 张磊, 赵鹏铎, 等. 舰船抗反舰导弹技术研究进展与发展路径 [J]. 中国造船, 2016, 57(4): 186–196. doi: 10.3969/j.issn.1000-4882.2016.04.021

    LI Y, ZHANG L, ZHAO P D, et al. A review on research progress and developing routes of warship anti-explosion under anti-ship missile explosion [J]. Shipbuilding of China, 2016, 57(4): 186–196. doi: 10.3969/j.issn.1000-4882.2016.04.021
    [3] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. doi: 10.3969/j.issn.1001-1455.2012.04.005

    CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. doi: 10.3969/j.issn.1001-1455.2012.04.005
    [4] WIERZBICKI T, NURICK G N. Large deformation of thin plates under localised impulsive loading [J]. International Journal of Impact Engineering, 1996, 18(7): 899–918.
    [5] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 29(10): 2723–2736. doi: 10.1016/j.engstruct.2007.01.021
    [6] 白志海, 蒋志刚, 严波, 等. 金属加筋板局部爆炸冲击荷载研究 [J]. 振动与冲击, 2011, 30(12): 93–97, 194. doi: 10.3969/j.issn.1000-3835.2011.12.019

    BAI Z H, JIANG Z G, YAN B, et al. Localized blast loading of a stiffned metal plate [J]. Journal of Vibration and Shock, 2011, 30(12): 93–97, 194. doi: 10.3969/j.issn.1000-3835.2011.12.019
    [7] CHUNG K Y S, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. part Ⅰ: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. doi: 10.1016/j.ijimpeng.2003.09.048
    [8] LANGDON G S, YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. part Ⅱ: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. doi: 10.1016/j.ijimpeng.2003.09.050
    [9] LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. doi: 10.1016/j.ijimpeng.2014.12.008
    [10] 邵军. 舰船用钢研究现状与发展 [J]. 鞍钢技术, 2013(4): 1–4. doi: 10.3969/j.issn.1006-4613.2013.04.001

    SHAO J. Present status on researching shipbuilding steel and its development [J]. Angang Technology, 2013(4): 1–4. doi: 10.3969/j.issn.1006-4613.2013.04.001
    [11] 刘振宇, 陈俊, 唐帅, 等. 新一代舰船用钢制备技术的现状与发展展望 [J]. 中国材料进展, 2014, 33(9/10): 595–602, 629. doi: 10.7502/j.issn.1674-3962.2014.09.08

    LIU Z Y, CHEN J, TANG S, et al. State of the art development of the manufacturing technologies of new generation war ship steels [J]. Materials China, 2014, 33(9/10): 595–602, 629. doi: 10.7502/j.issn.1674-3962.2014.09.08
    [12] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review: part Ⅰ: theoretical considerations [J]. International Journal of Impact Engineering, 1989, 8(2): 159–170. doi: 10.1016/0734-743X(89)90014-6
    [13] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review: part Ⅱ: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. doi: 10.1016/0734-743X(89)90015-8
    [14] CHUNG KIM YUEN S, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: part Ⅲ — an update 25 years on [J]. International Journal of Impact Engineering, 2017, 107: 108–117. doi: 10.1016/j.ijimpeng.2016.06.010
    [15] 李营, 张磊, 杜志鹏, 等. 反舰导弹舱内爆炸作用下舰船结构毁伤机理研究进展 [J]. 中国造船, 2018, 59(3): 185–202. doi: 10.3969/j.issn.1000-4882.2018.03.020

    LI Y, ZHANG L, DU Z P, et al. Research advance of damage mechanism of cabins under warhead internal blast [J]. Shipbuilding of China, 2018, 59(3): 185–202. doi: 10.3969/j.issn.1000-4882.2018.03.020
    [16] GU T, JIA L J, CHEN B, et al. Unified full-range plasticity till fracture of meta steel and structural steels [J]. Engineering Fracture Mechanics, 2021, 253: 107869. doi: 10.1016/j.engfracmech.2021.107869
    [17] JIA L J, ZHANG R, ZHOU C F, et al. In-situ three-dimensional X-ray investigation on micro ductile fracture mechanism of a high-Mn steel with delayed necking effect [J]. Journal of Materials Research and Technology, 2023, 24: 1076–1087. doi: 10.1016/j.jmrt.2023.03.062
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  29
  • PDF下载量:  14
出版历程
  • 收稿日期:  2024-02-26
  • 修回日期:  2024-03-25
  • 录用日期:  2024-06-17
  • 网络出版日期:  2024-07-26
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回