一种适用宽速域冲击的明胶鸟弹数值建模方法

彭鸿博 侯润峰 李旭阳 王计真 白春玉 石霄鹏

彭鸿博, 侯润峰, 李旭阳, 王计真, 白春玉, 石霄鹏. 一种适用宽速域冲击的明胶鸟弹数值建模方法[J]. 高压物理学报, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726
引用本文: 彭鸿博, 侯润峰, 李旭阳, 王计真, 白春玉, 石霄鹏. 一种适用宽速域冲击的明胶鸟弹数值建模方法[J]. 高压物理学报, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726
PENG Hongbo, HOU Runfeng, LI Xuyang, WANG Jizhen, BAI Chunyu, SHI Xiaopeng. A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726
Citation: PENG Hongbo, HOU Runfeng, LI Xuyang, WANG Jizhen, BAI Chunyu, SHI Xiaopeng. A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054201. doi: 10.11858/gywlxb.20240726

一种适用宽速域冲击的明胶鸟弹数值建模方法

doi: 10.11858/gywlxb.20240726
基金项目: 中央高校基本科研业务费专项资金(31220200069)
详细信息
    作者简介:

    彭鸿博(1972-),男,硕士,副教授,主要从事航空发动机数值分析、发动机维修及可靠性研究.E-mail:hbpeng@cauc.edu.cn

    通讯作者:

    石霄鹏(1987-),男,博士,讲师,主要从事民机结构冲击防护与民机客舱安全研究.E-mail:xpshi@cauc.edu.cn

  • 中图分类号: O347; O521.9

A Numerical Modeling Method of Gelatin Bird Projectile Suitable for Wide-Speed-Range Impact

  • 摘要: 明胶鸟弹在不同撞击速度下表现出不同的响应特性。为解决传统明胶鸟弹本构表征方法在不同速度范围内不能通用的问题,开展了330 g明胶鸟弹以70~190 m/s速度、60°或90°入射刚性铝合金平板试验,记录了冲击力数据及撞击形貌。结果表明,随着撞击速度的提高,鸟弹碎裂得更充分,碎块体积减小。利用LS-DYNA建立了自适应FEM-SPH(finite element method-smoothed particle hydrodynamics)鸟体模型。依据试验结果反演得到一组鸟体本构参数:切线模量为1.33 MPa,剪切模量为115.95 MPa,Murnaghan状态方程参数γ为10.49,k0为69.77 MPa,体积模量为246.4 MPa,失效塑性应变为1.15,初始屈服应力为0.21 MPa。仿真结果与试验结果具有很好的一致性,冲击力峰值的相对误差在2%以内,冲量的相对误差在10%以内。自适应FEM-SPH鸟体模型具有比SPH模型和拉格朗日模型更高的精度。由自适应模型得到的Hugoniot压强与理论结果具有相同的变化趋势,滞止压强与理论值较接近。

     

  • 图  鸟撞试验装置示意图

    Figure  1.  Schematic diagram of bird impact test apparatus

    图  靶板的外形及尺寸

    Figure  2.  Shape and size of target plate

    图  90°撞击工况(工况12)的冲击力对比

    Figure  3.  Comparison of the impact forces in Case 12 with the impact angle of 90°

    图  60°撞击工况(工况1)的冲击力对比

    Figure  4.  Comparison of the impact forces in Case 1 with the impact angle of 60°

    图  鸟弹1#的高速摄影照片

    Figure  5.  High-speed camera photos of projectile 1#

    图  鸟弹18#的高速摄像照片

    Figure  6.  High-speed camera photos of projectile 18#

    图  不同冲击速度下的高速摄像图像对比(θ=90°)

    Figure  7.  Comparison of high-speed camera photos at different impact velocities (θ=90°)

    图  不同工况下试验与数值模拟得到的冲击力对比

    Figure  8.  Comparison of the test and numerical impact forces in different cases

    图  90°工况下数值模拟得到的峰值载荷及冲量与试验结果的对比

    Figure  9.  Comparison of the numerical and test impact force peak and momentum under 90° impact

    图  10  60°工况下数值模拟得到的峰值载荷及冲量与试验结果的对比

    Figure  10.  Comparison of the numerical and test impact force peak and momentum under 60° impact

    图  11  74.7 m/s撞击速度下数值模拟和试验得到的撞击过程对比

    Figure  11.  Comparison of the numerical and test impact processes at the impact velocity of 74.7 m/s

    图  12  112.9 m/s撞击速度下数值模拟与试验得到的撞击过程对比

    Figure  12.  Comparison of the numerical and test impact processes at the impact velocity of 112.9 m/s

    图  13  158.5 m/s撞击速度下数值模拟与试验得到的撞击过程对比

    Figure  13.  Comparison of the numerical and test impact processes at the impact velocity of 158.5 m/s

    图  14  具有不同孔隙率的圆柱明胶鸟弹的理论Hugoniot压强随撞击速度的变化

    Figure  14.  Hugoniot pressure vs. impact velocity for cylindrical gelatin bird projectiles with various porosities

    图  15  归一化Hugoniot压强和归一化滞止压强的数值计算结果与试验结果及理论值的对比

    Figure  15.  Comparison of normalized Hugoniot pressures and normalized stagnation pressures between the theoretical values, test values and numerical results

    表  1  不同工况下鸟撞试验结果

    Table  1.   Test results of bird impact under various impact conditions

    Caseu0/(m·s−1)θ/(°)Plate shapeBird projectile No. (m, actual impact velocity)
    111060Rectangular18# (334 g, 110.1 m/s), 20# (329.5 g, 107.0 m/s)
    211060Rectangular29# (326 g, 114.7 m/s)
    312060Rectangular21# (327 g, 124.6 m/s), 22# (328 g, 124.1 m/s)
    415060Rectangular23# (331 g, 150.1 m/s), 24# (330 g, 153.7 m/s)
    516060Rectangular25# (331 g, 166.6 m/s)
    617060Rectangular26# (328 g, 175.9 m/s)
    718060Rectangular28# (331 g, 185.3 m/s)
    819060Rectangular27# (332 g, 191.8 m/s)
    97060Square39# (328 g, 75.2 m/s), 40# (328 g, 73.6 m/s)
    109060Square37# (328 g, 94.6 m/s)
    1110060Square38# (327 g, 99.6 m/s)
    1211090Trapezoidal1# (336 g, 112.9 m/s), 2# (328 g, 113.1 m/s)
    1312090Trapezoidal5# (333 g, 125.0 m/s), 12# (334 g, 121.8 m/s)
    1415090Trapezoidal6# (332 g, 149.0 m/s), 7# (328 g, 148.8 m/s)
    1515090Trapezoidal8# (332 g, 153.4 m/s), 9# (333 g, 148.8 m/s)
    1616090Trapezoidal10# (325 g, 165.3 m/s), 11# (329 g, 158.5 m/s)
    178090Square34# (330 g, 84.9 m/s), 35# (329 g, 80.3 m/s)
    187090Square36# (330.5 g, 74.7 m/s)
    下载: 导出CSV

    表  2  铝合金的材料参数

    Table  2.   Material parameters of aluminum alloy

    Density/(kg·m−3)Young’s modulus/GPaPoisson’s ratioYield stress/MPaTangent modulus/GPa
    2796710.334505
    下载: 导出CSV

    表  3  SPH鸟体材料参数

    Table  3.   Material parameters of SPH bird model

    Density/(kg·m−3) Cut-off pressure/MPa Dynamic viscosity/(Pa·s)
    950 −1 0.001
    下载: 导出CSV

    表  4  自适应FEM-SPH模型的本构参数优化结果

    Table  4.   Optimization results of constitutive parameters for adaptive FEM-SPH model

    Value Et/MPa G/MPa γ K/MPa k0/MPa εf σs/MPa
    Range 0.01−2.00 1−300 1−20 1−300 1−300 0.01−1.20 0.01−1.00
    Optimal value 1.33 115.95 10.49 246.4 69.77 1.15 0.21
    下载: 导出CSV

    表  5  不同学者通过数值模拟得到的归一化Hugoniot压强和滞止压强[10, 12, 18, 2027]

    Table  5.   Numerical results of normalized Hugoniot and stagnation pressures calculated by different researchers[10, 12, 18, 2027]

    Ref. u0/(m·s−1) Normalized pH Normalized ps m/kg Density/(kg·m−3) Bird model geometry
    [20] 116 5.2 1.5 1.8 938 Hemispherical-ended
    [21] 200 6.2 1.2 0.6 930 Cylinder
    [22] 116 6.8 1.0 1.8 934 Hemispherical-ended
    [22] 197 4.0 1.0 1.8 934 Hemispherical-ended
    [22] 253 3.3 1.0 1.8 934 Hemispherical-ended
    [18] 116 13.8 0.9 1.0 950 Hemispherical-ended
    [23] 116 5.5 1.1 1.8 950 Hemispherical-ended
    [24] 225 3.7 0.3 1.8 934 Cylinder
    [25] 116 12.7 1.1 1.8 938 Hemispherical-ended
    [26] 116 9.1 1.0 1.7 950 Hemispherical-ended
    [10] 116 15.0 1.3 0.2 1019 Cylinder
    [27] 116 14.4 1.0 0.8 938 Hemispherical-ended
    [27] 225 11.7 1.2 0.8 938 Hemispherical-ended
    [27] 253 11.5 1.1 0.8 938 Hemispherical-ended
    [12] 95 5.8 0.9 1.3 968 Cylinder
    [12] 117 4.9 0.5 1.3 968 Cylinder
    [12] 145 4.1 1.6 1.3 968 Cylinder
    [12] 175 3.4 1.9 1.3 968 Cylinder
    下载: 导出CSV
  • [1] GUIDA M, MARULO F, BELKHELFA F Z, et al. A review of the bird impact process and validation of the SPH impact model for aircraft structures [J]. Progress in Aerospace Sciences, 2022, 129: 100787. doi: 10.1016/j.paerosci.2021.100787
    [2] 张迎春, 陆晓华, 张柱国. 运输类飞机鸟撞适航要求解析及审定实践 [M]. 北京: 科学出版社, 2023: 39–40.

    ZHANG Y C, LU X H, ZHANG Z G. Transport category airplane bird-strike airworthiness regulations interpretation and certification practice [M]. Beijing: Science Press, 2023: 39–40.
    [3] 刘小川, 王计真, 白春玉. 人工鸟研究进展及在飞机结构抗鸟撞中的应用 [J]. 振动与冲击, 2021, 40(12): 80–89. doi: 10.13465/j.cnki.jvs.2021.12.011

    LIU X C, WANG J Z, BAI C Y. Overview on artificial bird and application on the structural bird-strike [J]. Journal of Vibration and Shock, 2021, 40(12): 80–89. doi: 10.13465/j.cnki.jvs.2021.12.011
    [4] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. doi: 10.1016/j.ijimpeng.2009.03.009
    [5] 王富生, 李立州, 王新军, 等. 鸟体材料参数的一种反演方法 [J]. 航空学报, 2007, 28(2): 344–347. doi: 10.3321/j.issn:1000-6893.2007.02.018

    WANG F S, LI L Z, WANG X J, et al. A method to identify bird’s material parameters [J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 344–347. doi: 10.3321/j.issn:1000-6893.2007.02.018
    [6] LIU J, LI Y L, GAO X S. Bird strike on a flat plate: experiments and numerical simulations [J]. International Journal of Impact Engineering, 2014, 70: 21–37. doi: 10.1016/j.ijimpeng.2014.03.006
    [7] 王计真, 刘小川. 鸟撞平板试验与鸟体本构参数识别方法 [J]. 航空学报, 2017, 38(Suppl 1): 721550. doi: 10.7527/S1000-6893.2017.721550

    WANG J Z, LIU X C. Test of bird striking on panel and identification method for bird constitutive parameters [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(Suppl 1): 721550. doi: 10.7527/S1000-6893.2017.721550
    [8] ZHANG Y L, ZHOU Y D. Evaluating constitutive models of smoothed particle hydrodynamics for bird-strike simulation [J]. International Journal of Crashworthiness, 2023: 1–10. doi: 10.1080/13588265.2023.2258650
    [9] YU P, YU S L, HE S, et al. Inversion for constitutive model parameters of bird in case of bird striking [J]. Shock and Vibration, 2022: 2456777. doi: 10.1155/2022/2456777
    [10] ZAKIR S M, LI Y L. Dynamic response of the leading edge wing under soft body impact [J]. International Journal of Crashworthiness, 2012, 17(4): 357–376. doi: 10.1080/13588265.2012.661239
    [11] 冯振宇, 霍雨佳, 裴惠, 等. 明胶鸟弹撞击力传感器试验及数值建模方法研究 [J]. 振动与冲击, 2019, 38(12): 206–212. doi: 10.13465/j.cnki.jvs.2019.12.029

    FENG Z Y, HUO Y J, PEI H, et al. An experiment and numerical modeling method of gelatin bird striking on force sensors [J]. Journal of Vibration and Shock, 2019, 38(12): 206–212. doi: 10.13465/j.cnki.jvs.2019.12.029
    [12] ASLAM M A, RAYHAN S B, KE Z G, et al. Ballistic gelatin Lagrange Mooney-Rivlin material model as a substitute of bird in finite element bird strike case studies [J]. Latin American Journal of Solids and Structures, 2020, 17(6): e298. doi: 10.1590/1679-78256215
    [13] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J, VARAS D, et al. Artificial bird strike on Hopkinson tube device: experimental and numerical analysis [J]. International Journal of Impact Engineering, 2020, 138: 103477. doi: 10.1016/j.ijimpeng.2019.103477
    [14] 刘小川, 郭军, 孙侠生, 等. 用于鸟撞试验的仿真鸟弹研究 [J]. 实验力学, 2012, 27(5): 623–629.

    LIU X C, GUO J, SUN X S, et al. Investigation on the artificial bird projectile used in bird strike test [J]. Journal of Experimental Mechanics, 2012, 27(5): 623–629.
    [15] YANG X F, LIU M B, PENG S L. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability [J]. Computers & Fluids, 2014, 92: 199–208. doi: 10.1016/j.compfluid.2014.01.002
    [16] 刘军, 李玉龙, 郭伟国, 等. 鸟撞45#钢平板动响应试验研究 [J]. 振动与冲击, 2013, 32(4): 15–20. doi: 10.3969/j.issn.1000-3835.2013.04.004

    LIU J, LI Y L, GUO W G, et al. Tests for bird striking on a plate made of 45# steel [J]. Journal of Vibration and Shock, 2013, 32(4): 15–20. doi: 10.3969/j.issn.1000-3835.2013.04.004
    [17] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
    [18] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools [J]. International Review of Mechanical Engineering, 2007, 1(4): 380–389.
    [19] WILBECK J S. Impact behavior of low strength projectiles [D]. College Station: Texas A&M University, 1977.
    [20] JOHNSON A F, HOLZAPFEL M. Modelling soft body impact on composite structures [J]. Composite Structures, 2003, 61(1/2): 103–113. doi: 10.1016/S0263-8223(03)00033-3
    [21] AIROLDI A, CACCHIONE B. Modelling of impact forces and pressures in Lagrangian bird strike analyses [J]. International Journal of Impact Engineering, 2006, 32(10): 1651–1677. doi: 10.1016/j.ijimpeng.2005.04.011
    [22] JENQ S T, HSIAO F B, LIN I C, et al. Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor [J]. Computational Materials Science, 2007, 39(3): 518–526. doi: 10.1016/j.commatsci.2006.08.008
    [23] THO C H, SMITH M R. Accurate bird strike simulation methodology for BA609 tiltrotor [J]. Journal of the American Helicopter Society, 2011, 56(1): 12007. doi: 10.4050/JAHS.56.012007
    [24] MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade [J]. International Journal of Impact Engineering, 2008, 35(6): 487–498. doi: 10.1016/j.ijimpeng.2007.04.008
    [25] SMOJVER I, IVANČEVIĆ D. Numerical simulation of bird strike damage prediction in airplane flap structure [J]. Composite Structures, 2010, 92(9): 2016–2026. doi: 10.1016/j.compstruct.2009.12.006
    [26] SMOJVER I, IVANČEVIĆ D. Advanced modelling of bird strike on high lift devices using hybrid Eulerian-Lagrangian formulation [J]. Aerospace Science and Technology, 2012, 23(1): 224–232. doi: 10.1016/j.ast.2011.07.010
    [27] HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies [J]. Aerospace Science and Technology, 2014, 32(1): 260–266. doi: 10.1016/j.ast.2013.10.008
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  41
  • PDF下载量:  17
出版历程
  • 收稿日期:  2024-02-06
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-07-15
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回