重复冲击载荷下泡沫铝夹芯壳的动态响应

朱浩霖 张天辉 刘志芳

朱浩霖, 张天辉, 刘志芳. 重复冲击载荷下泡沫铝夹芯壳的动态响应[J]. 高压物理学报, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721
引用本文: 朱浩霖, 张天辉, 刘志芳. 重复冲击载荷下泡沫铝夹芯壳的动态响应[J]. 高压物理学报, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721
ZHU Haolin, ZHANG Tianhui, LIU Zhifang. Dynamic Responses of Aluminum Foam Sandwich Shells under Repeated Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721
Citation: ZHU Haolin, ZHANG Tianhui, LIU Zhifang. Dynamic Responses of Aluminum Foam Sandwich Shells under Repeated Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054205. doi: 10.11858/gywlxb.20240721

重复冲击载荷下泡沫铝夹芯壳的动态响应

doi: 10.11858/gywlxb.20240721
基金项目: 国家自然科学基金(12272254);山西省自然科学基金(202203021211170)
详细信息
    作者简介:

    朱浩霖(1997-),男,硕士研究生,主要从事冲击动力学研究. E-mail:zhuhaolin1997@foxmail.com

    通讯作者:

    刘志芳(1971-),女,博士,教授,主要从事冲击动力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O347.3; O521.9

Dynamic Responses of Aluminum Foam Sandwich Shells under Repeated Impact Loadings

  • 摘要: 通过数值模拟研究了泡沫铝夹芯壳在重复冲击载荷作用下的变形和能量耗散机理,分析了曲率半径、前后面板厚度分配、芯层厚度和冲击能量梯度对结构抗重复冲击性能和能量吸收能力的影响规律。结果表明:在重复冲击载荷作用下,泡沫铝夹芯壳结构的变形不断累积,前面板局部弯曲变形,芯层局部压缩,后面板整体弯曲变形。随着冲击次数的增加,冲击力峰值逐渐增大,冲击持续时间缩短,结构能量吸收能力降低,整体抗弯刚度增大。每次冲击能量相同时,泡沫铝夹芯壳结构曲率越大,能量吸收能力越强,同时前、后面板5次重复冲击后的中点挠度大于曲率较小的夹芯壳结构。5次重复冲击载荷作用下,前面板厚度较大且后面板厚度较小时,结构的比吸能较低,但后面板中点挠度较小。泡沫铝芯层厚度越大,结构的后面板挠度越小,但总比吸能降低。3种不同梯度的冲击能量作用下,递增能量工况下结构的吸能最多,前、后面板的挠度较大,递减能量工况下结构的吸能最少,前、后面板的挠度较小。

     

  • 图  泡沫铝夹芯壳示意图

    Figure  1.  Schematic diagram of aluminum foam sandwich shell

    图  泡沫铝夹芯壳的1/4有限元模型

    Figure  2.  Finite element model of 1/4 aluminum foam sandwich shell

    图  面板和芯层的应力-应变曲线[15]

    Figure  3.  Stress-strain curves of the face sheet and the foam core[15]

    图  数值模拟可行性分析

    Figure  4.  Feasibility analysis of the numerical simulation

    图  R100夹芯壳在重复冲击下的变形模式

    Figure  5.  Deformation of R100 sandwich shell under repeated impact

    图  R100夹芯壳前、后面板中点挠度时程曲线

    Figure  6.  Midpoint deflection-time curves of front and back face sheet of R100 sandwich shell

    图  R100夹芯壳重复冲击能量时程曲线

    Figure  7.  Energy-time curves of R100 sandwich shell under repeated impact

    图  R100夹芯壳的冲击力时程曲线

    Figure  8.  Impact force time curves of R100 sandwich shell

    图  R100夹芯壳的冲击力-位移曲线

    Figure  9.  Impact force-displacement curves of R100 sandwich shell under repeated impact

    图  10  3种曲率夹芯壳在18 J能量重复冲击下的中点挠度

    Figure  10.  Midpoint deflection of three sandwich shells with different curvatures under repeated impact of 18 J energy

    图  11  3种曲率夹芯壳在18 J能量重复冲击下的比吸能

    Figure  11.  Specific energy absorption of three sandwich shells with different curvatures under repeated impact of 18 J energy

    图  12  3种面板厚度R50夹芯壳在18 J能量重复冲击下的中点挠度

    Figure  12.  Midpoint deflection of three R50 sandwich shells with different panel thicknesses under repeated impact of 18 J energy

    图  13  3种面板厚度R50夹芯壳在18 J能量重复冲击下的比吸能

    Figure  13.  Specific energy absorption of R50 sandwich shells with three panel thicknesses under repeated impact of 18 J energy

    图  14  3种芯层厚度R50夹芯壳在18 J能量重复冲击下的中点挠度

    Figure  14.  Midpoint deflection of three R50 sandwich shells with different core thickness under repeated impact of 18 J energy

    图  15  3种芯层厚度R50夹芯壳在18 J能量重复冲击下的比吸能

    Figure  15.  Specific energy absorption of R50 sandwich shells with three core thickness under repeated impact of 18 J energy

    图  16  R50夹芯壳在3种能量梯度重复冲击下的中点挠度

    Figure  16.  Midpoint deflection of R50 sandwich shell under repeated impact of three energy gradients

    图  17  R50夹芯壳在3种能量梯度重复冲击下的比吸能

    Figure  17.  Specific energy absorption of R50 sandwich shell under repeated impact of three energy gradients

    表  1  面板的材料参数

    Table  1.   Material parameters of face sheet

    MaterialDensity/(kg·m−3)Young modulus/GPaYield stress/MPaPoisson’s ratio
    Mild steel78002101820.3
    下载: 导出CSV

    表  2  泡沫铝芯层的材料参数

    Table  2.   Material parameters of aluminum foam core

    Material Relative density/
    %
    Young’s modulus/
    GPa
    Plateau stress/
    MPa
    Elastic Poisson’s
    ratio
    Plastic Poisson’s
    ratio
    Plastic stress
    ratio
    Aluminum foam 18.5 0.8 10 0.2 0 1.73
    下载: 导出CSV

    表  3  夹芯壳模型的几何参数

    Table  3.   Geometric parameters of sandwich shell model

    SpecimenR/mmα/(°)L/mmS/mmm/g
    R5050104100102.5258.6
    R10010054100100.4268.5
    R20020028100100.9278.4
    下载: 导出CSV

    表  4  不同前、后面板厚度夹芯壳的几何参数

    Table  4.   Geometric parameters of different thickness of front and back face of sandwich shell

    Specimenh1/mmh2/mmC/mmm/g
    H11.02.010250.8
    H21.51.510258.6
    H32.01.010266.4
    下载: 导出CSV

    表  5  不同芯层厚度夹芯壳的几何参数

    Table  5.   Geometric parameters of sandwich shells with different core thicknesses

    Specimenh1/mmh2/mmhc/mmm/g
    C101.51.510258.6
    C151.51.515281.2
    C201.51.520304.0
    下载: 导出CSV

    表  6  5次冲击的能量配置工况

    Table  6.   Energy arrangement of five impacts

    CaseImpact energy/J
    1st2nd3rd4th5th
    E11215182124
    E21818181818
    E32421181512
    下载: 导出CSV
  • [1] SINGH P, SHEIKH J, BEHERA B K. Metal-faced sandwich composite panels: a review [J]. Thin-Walled Structures, 2024, 195: 111376. doi: 10.1016/j.tws.2023.111376
    [2] PALOMBA G, EPASTO G, CRUPI V. Lightweight sandwich structures for marine applications: a review [J]. Mechanics of Advanced Materials and Structures, 2022, 29(26): 4839–4864. doi: 10.1080/15376494.2021.1941448
    [3] XIANG C P, QIN Q H, WANG M S, et al. Low-velocity impact response of sandwich beams with a metal foam core: experimental and theoretical investigations [J]. International Journal of Impact Engineering, 2019, 130: 172–183. doi: 10.1016/j.ijimpeng.2019.04.014
    [4] JING L, SU X Y, CHEN D, et al. Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact [J]. Thin-Walled Structures, 2019, 135: 227–244. doi: 10.1016/j.tws.2018.11.011
    [5] ZHANG W, QIN Q H, LI J F, et al. Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact [J]. Composite Structures, 2020, 242: 112175. doi: 10.1016/j.compstruct.2020.112175
    [6] ZHAO Y, YANG Z H, YU T L, et al. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact [J]. Construction and Building Materials, 2021, 273: 121996. doi: 10.1016/j.conbuildmat.2020.121996
    [7] 敬霖. 强动载荷作用下泡沫金属夹芯壳结构的动力学行为及其失效机理研究 [D]. 太原: 太原理工大学, 2012: 162–166.

    JING L. The dynamic mechanical behavior and failure mechanism of sandwich shells with metallic foam cores under intensive loading [D]. Taiyuan: Taiyuan University of Technology, 2012: 162–166.
    [8] JING L, WANG Z H, ZHAO M L. Response of metallic cylindrical sandwich shells subjected to projectile impact: experimental investigations [J]. Composite Structures, 2014, 107: 36–47. doi: 10.1016/j.compstruct.2013.07.011
    [9] ZHOU X F, JING L. Low-velocity impact response of sandwich panels with layered-gradient metal foam cores [J]. International Journal of Impact Engineering, 2024, 184: 104808. doi: 10.1016/j.ijimpeng.2023.104808
    [10] 朱凌, 蔡伟, 史诗韵, 等. 反复碰撞载荷下船体结构弹塑性动态响应研究进展 [J]. 船舶力学, 2021, 25(2): 256–262. doi: 10.3969/j.issn.1007-7294.2021.02.014

    ZHU L, CAI W, SHI S Y, et al. Review on elastic-plastic dynamic responses of ship structures under repeated impact loadings [J]. Journal of Ship Mechanics, 2021, 25(2): 256–262. doi: 10.3969/j.issn.1007-7294.2021.02.014
    [11] XIAO W, LI Y G, HU Y, et al. Analytical study on the dynamic mechanical behaviours of foam-core sandwich plate under repeated impacts [J]. Thin-Walled Structures, 2024, 196: 111480. doi: 10.1016/j.tws.2023.111480
    [12] 朱凌, 郭开岭, 余同希, 等. 泡沫金属夹芯梁在重复冲击下的动态响应 [J]. 爆炸与冲击, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198

    ZHU L, GUO K L, YU T X, et al. Dynamic responses of metal foam sandwich beams to repeated impacts [J]. Explosion and Shock Waves, 2021, 41(7): 073101. doi: 10.11883/bzycj-2020-0198
    [13] GUO K L, MU M Y, ZHOU S, et al. Dynamic responses of metal foam sandwich beam under repeated impacts considering impact location and face thickness distribution [J]. Composites Part C: Open Access, 2023, 11: 100372. doi: 10.1016/j.jcomc.2023.100372
    [14] GUO K L, ZHU L, LI Y G, et al. Experimental investigation on the dynamic behaviour of aluminum foam sandwich plate under repeated impacts [J]. Composite Structures, 2018, 200: 298–305. doi: 10.1016/j.compstruct.2018.05.148
    [15] GUO K L, ZHU L, LI Y G, et al. Numerical study on mechanical behavior of foam core sandwich plates under repeated impact loadings [J]. Composite Structures, 2019, 224: 111030. doi: 10.1016/j.compstruct.2019.111030
    [16] 郭开岭. 重复冲击载荷下船用泡沫金属夹芯结构动态力学行为研究 [D]. 武汉: 武汉理工大学, 2019: 137–164.

    GUO K L. Dynamic behavior of metal foam sandwich structures for ship under repeated impact loadings [D]. Wuhan: Wuhan University of Technology, 2019: 137–164.
    [17] LIU K, KANG S B, GAO S. Experimental and analytical study on impact response of stainless steel-aluminium foam-alloy steel sandwich panels [J]. International Journal of Impact Engineering, 2023, 179: 104661. doi: 10.1016/j.ijimpeng.2023.104661
    [18] KUMAR P, STARGEL D S, SHUKLA A. Effect of plate curvature on blast response of carbon composite panels [J]. Composite Structures, 2013, 99: 19–30. doi: 10.1016/j.compstruct.2012.11.036
    [19] LI X, HAO X, LI S Q, et al. Dynamic behavior of single curved fiber-metal hybrid lamina composite shells under blast loading-experimental observations [J]. Composites Science and Technology, 2023, 234: 109930. doi: 10.1016/j.compscitech.2023.109930
    [20] DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283. doi: 10.1016/S0022-5096(99)00082-4
    [21] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. doi: 10.1016/0734-743X(84)90005-8
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  27
  • PDF下载量:  20
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-20
  • 刊出日期:  2024-09-29

目录

    /

    返回文章
    返回