Volume 31 Issue 3
Apr 2017
Turn off MathJax
Article Contents
LIU Xiu-Ru, WANG Jun-Long, CHEN Li-Ying, HONG Shi-Ming. Applications of Rapid Compression Technique within Milliseconds in Materials Science[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003
Citation: LIU Xiu-Ru, WANG Jun-Long, CHEN Li-Ying, HONG Shi-Ming. Applications of Rapid Compression Technique within Milliseconds in Materials Science[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003

Applications of Rapid Compression Technique within Milliseconds in Materials Science

doi: 10.11858/gywlxb.2017.03.003
  • Received Date: 07 Dec 2016
  • Rev Recd Date: 09 Feb 2017
  • The research of the effect of rapid compression within milliseconds on materials is still in its initial stage.Therefore, it is necessary to improve the rapid compression experimental technology and carry out in-depth research on rapid compression process and its application in materials science.In the present review, we discuss 4 kinds of experimental techniques developed to produce the rapid compression within milliseconds, and summarize their applications in material science, including preparing amorphous materials, measuring Grüneisen and W-J parameters, and studying the transformation kinetics.

     

  • loading
  • [1]
    BOEHLER R, GETTING I C, KENNEDY G C.Grüneisen parameter of NaCl at high compressions[J].J Phys Chem Solids, 1977, 38(3):233-236. doi: 10.1016-0022-3697(77)90095-6/
    [2]
    BOEHLER R.Adiabats (∂T/∂P)s and Grüneisen parameter of NaCl up to 50 kilobars and 800 ℃[J].J Geophys Res, 1981, 86:7159-7162. doi: 10.1029/JB086iB08p07159
    [3]
    BOEHLER R, ROSS M.Grüneisen parameter of cesium and rubidium at high pressure and the nature of the isostructural electronic transition[J].Phys Rev B, 1984, 29(6):3673-3676. doi: 10.1103/PhysRevB.29.3673
    [4]
    MENCKE A, CHENG A, CAFFREY M.A simple apparatus for time-resolved X-ray diffraction biostructure studies using static and oscillating pressures and pressure jumps[J].Rev Sci Instrum, 1993, 64(2):383-389. doi: 10.1063/1.1144261
    [5]
    WOENCKHAUS J, KOHLING R, WINTER R, et al.High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique[J].Rev Sci Instrum, 2000, 71(10):3895-3899. doi: 10.1063/1.1290508
    [6]
    DI LEONARDO R, SCOPIGNO T, RUOCCO G, et al.Spectroscopic cell for fast pressure jumps across the glass transition line[J].Rev Sci Instrum, 2004, 75(8):2631-2637. doi: 10.1063/1.1763253
    [7]
    SCHIEWEK M, KRUMOVA M, HEMPEL G, et al.Pressure jump relaxation setup with IR detection and millisecond time resolution[J].Rev Sci Instrum, 2007, 78:045101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02382076/
    [8]
    EUERT U, KRUMOVA M, HEMPEL G, et al.NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time[J].Rev Sci Instrum, 2010, 81(10):105102. doi: 10.1063/1.3481164
    [9]
    BROOKS N J, GAUTHE B L, TERRILL N J, et al.Automated high pressure cell for pressure jump X-ray diffraction[J].Rev Sci Instrum, 2010, 81(6):064103. doi: 10.1063/1.3449332
    [10]
    HONG S M, CHEN L Y, LIU X R, et al.High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate)[J].Rev Sci Instrums, 2005, 76(5):053905. doi: 10.1063/1.1899443
    [11]
    EVANS W J, YOO C S, LEE G W, et al.Dynamic diamond anvil cell (dDAC):a novel device for studying the dynamic-pressure properties of materials[J].Rev Sci Instrum, 2007, 78(7):073904. doi: 10.1063/1.2751409
    [12]
    汪卫华.非晶态物质的本质与特性[J].物理学进展, 2013, 33(5):177-351. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201619183

    WANG W H.The nature and properties of amorphous matter[J].Progress in Physics, 2013, 33(5):177-351. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201619183
    [13]
    MISHIMA O, CALVERT L D, WHALLEY E.'Melting ice' Ⅰ at 77 K and 10 kbar:a new method of making amorphous solids[J].Nature, 1984, 310(5976):393-395. doi: 10.1038/310393a0
    [14]
    王文魁.亚稳相的高压暴露[J].高压物理学报, 1989, 3(4):257-268. http://www.gywlxb.cn/CN/abstract/abstract1250.shtml

    WANG W K.Exposure of metastable phases by high pressure[J].Chinese Journal of High Pressure Physics, 1989, 3(4):257-268. http://www.gywlxb.cn/CN/abstract/abstract1250.shtml
    [15]
    YANG C, LIU R P, ZHAN Z J, et al.Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching[J].Appl Phys Lett, 2005, 87(5):051904. doi: 10.1063/1.2005367
    [16]
    刘秀茹, 王明友, 张豆豆, 等.快速压致凝固法制备块体亚稳材料的研究进展[J].高压物理学报, 2014, 28(4):385-393. http://www.gywlxb.cn/CN/abstract/abstract1719.shtml

    LIU X R, WANG M Y, ZHANG D D, et al.Progress in preparation of bulk metastable materials by rapid compression induced solidification[J].Chinese Journal of High Pressure Physics, 2014, 28(4):385-393. http://www.gywlxb.cn/CN/abstract/abstract1719.shtml
    [17]
    JIA R, SHAO C G, SU L, et al.Rapid compression induced solidification of bulk amorphous sulfur[J].J Phys D, 2007, 40(12):3763-3766. doi: 10.1088/0022-3727/40/12/030
    [18]
    ANDRIKOPOULOS K S, KALAMPOUNIAS A G, FALAGARA O, et al.The glassy and supercooled state of elemental sulfur:vibrational modes, structure metastability, and polymer content[J].J Chem Phys, 2013, 139(12):124501. doi: 10.1063/1.4821592
    [19]
    SANLOUP C, GREGORYANZ E, DEGTYAREVA O, et al.Structural transition in compressed amorphoussulfur[J].Phys Rev Lett, 2008, 100(7):075701. doi: 10.1103/PhysRevLett.100.075701
    [20]
    SHAO C, AN H, WANG X, et al.Deformation-induced linear chain-ring transition and crystallization of living polymer sulfur[J].Macromolecules, 2007, 40(26):9475-9481. doi: 10.1021/ma071803a
    [21]
    YU P, WANG W H, WANG R J, et al.Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression[J].Appl Phys Lett, 2009, 94(1):011910. doi: 10.1063/1.3064125
    [22]
    ZHANG D D, LIU X R, HONG S M, et al.Exothermic supercooled liquid-liquid transition in amorphous sulfur[J].Chin Phys Lett, 2014, 31(6):066401. doi: 10.1088/0256-307X/31/6/066401
    [23]
    刘秀茹, 张豆豆, 洪时明, 等.非晶硫熔化过程中的链环转变[J].科学通报, 2014, 59(35):3450-3452. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201435003.htm

    LIU X R, ZHANG D D, HONG S M, et al.Chain-ring transition during exothermic "melting" in amorphous sulfur[J].Chinese Science Bulletin, 2014, 59(35):3450-3452. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201435003.htm
    [24]
    ZHANG D D, LIU X R, HONG S M, et al.Pressure and time dependences of the supercooled liquid-to-liquid transition in sulfur[J].Chin Phys Lett, 2016, 33(2):026301. doi: 10.1088/0256-307X/33/2/026301
    [25]
    TANG F, ZHANG L J, LIU F L, et al.Pressure-induced solidifications of liquid sulfur below and above transition[J].Chin Phys B, 2016, 25(4):046102. doi: 10.1088/1674-1056/25/4/046102
    [26]
    SIMONIN L, LIAO H.Characterization of flame-sprayed PEEK coatings by FTIR-ATR, DSC and acoustic microscopy[J].Macromol Mater Eng, 2000, 283(1):153-162. doi: 10.1002/(ISSN)1439-2054
    [27]
    YUAN C S, HONG S M, LI X X, et al.Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone[J].J Phys D, 2011, 44(16):165405. doi: 10.1088/0022-3727/44/16/165405
    [28]
    洪时明.高压相变与时间的关系[J].高压物理学报, 2013, 27(2):162-167. http://www.gywlxb.cn/CN/abstract/abstract1550.shtml

    HONG S M.Time dependence of high pressure induced phase transitions[J].Chinese Journal of High Pressure Physics, 2013, 27(2):162-167. http://www.gywlxb.cn/CN/abstract/abstract1550.shtml
    [29]
    WANG M Y, LIU X R, ZHANG C R, et al.Compression-rate dependence of solidified structure from melt in isotactic polypropylene[J].J Phys D, 2013, 46(14):145307. doi: 10.1088/0022-3727/46/14/145307
    [30]
    SHENG H W, LIU H Z, CHENG Y Q, et al.Polyamorphism in a metallic glass[J].Nat Mater, 2007, 6(3):192-197. doi: 10.1038/nmat1839
    [31]
    LIU X R, HONG S M.Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide- based bulk metallic glasses[J].Appl Phys Lett, 2007, 90(25):251903. doi: 10.1063/1.2749722
    [32]
    HUANG D H, LIU X R, SU L, et al.Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method[J].J Phys D, 2007, 40(17):5327-5330. doi: 10.1088/0022-3727/40/17/047
    [33]
    陈丽英.快速大幅度增压法测量NaCl的Grüneisen参数[D].成都: 西南交通大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y751992

    CHEN L Y.Measuring Grüneisen parameter of NaCl by double quick and larger range compression[D].Chengdu: Southwest Jiaotong University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y751992
    [34]
    陈丽英, 刘秀茹, 黎明发, 等.一种直接测量W-J参数的实验方法[J].物理学报, 2013, 62(7):079102. http://d.old.wanfangdata.com.cn/Periodical/wlxb201307078

    CHEN L Y, LIU X R, LI M F, et al.An experimental method to measure W-J parameters[J].Acta Physica Sinica, 2013, 62(7):079102. http://d.old.wanfangdata.com.cn/Periodical/wlxb201307078
    [35]
    CHEN L Y, LIU X R, HUANG H J, et al.Measuring the isentropic compression curves and W-J parameters of tantalum and molybdenum via a pressure-jump method[J].Mater Res Express, 2014, 1(2):025707. doi: 10.1088/2053-1591/1/2/025707
    [36]
    CHEN L Y, LIU X R, HE Z, et al.Measuring the W-J parameter of graphite via a pressure-jump method[J].Adv Mater Res, 2014, 926:154-157. http://www.scientific.net/AMR.926-930.154
    [37]
    陈丽英.快速增压法测量物质的等熵压缩曲线及W-J参数[D].成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1015348779.htm

    CHEN L Y.Measurement of the isentropic compression curve and W-J parameter via a pressure-jump method[D].Chengdu: Southwest Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1015348779.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(5941) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return