高压相变与时间的关系

洪时明

洪时明. 高压相变与时间的关系[J]. 高压物理学报, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002
引用本文: 洪时明. 高压相变与时间的关系[J]. 高压物理学报, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002
HONG Shi-Ming. Time Dependence of High Pressure Induced Phase Transitions[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002
Citation: HONG Shi-Ming. Time Dependence of High Pressure Induced Phase Transitions[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 162-167. doi: 10.11858/gywlxb.2013.02.002

高压相变与时间的关系

doi: 10.11858/gywlxb.2013.02.002
详细信息
    通讯作者:

    洪时明 E-mail:smhong2@163.com

Time Dependence of High Pressure Induced Phase Transitions

  • 摘要: 为了研究压致相变的动力学行为,最期待的途径是将高时间分辨率的检测手段与精确的压缩技术相结合。实际上,在大压机上可采用间接的方法,即将回收样品的表征结果与样品所经历的压力、温度和时间进行对比。作为典型例子,根据过去的实验数据,讨论了C-H-O体系中金刚石的成核条件与时间的关系,证明延长保温保压时间有利于高压稳定相的形成。与此相反,一些亚稳相,如大块非晶硫、金属玻璃和非晶高分子材料等,则可通过快速压缩过程获得。实验结果表明:许多物质的相变动力学特征可以在1~103 GPa/s量级的压缩速率中表现出来。在两类实验中,都可以建立包括压力、温度和时间3个维度的动力学相图。

     

  • Bridgeman P W. The Physics of High Pressure [M]. New York: MacMillan, 1931.
    Bridgeman P W. The Nature of Thermodynamics [M]. Cambridge, MA: Harvard University Press, 1941.
    Bridgeman P W. Collected Experimental Papers(Seven volumes) [M]. Cambridge, MA: Harvard University Press, 1964.
    Cannon J F. Behavior of the elements at high pressure [J]. J Phys Chem Ref Data, 1974, 3(3): 781-824; Merrill L. Behavior of the AB-type compounds at high pressure and high temperatures [J]. J Phys Chem Ref Data, 1977, 6(4): 1205-1252; Merrill L. Behavior of the AB2 type compounds at high pressure and high temperatures [J]. J Phys Chem Ref Data, 1982, 11(4): 1005-1064.
    Bundy F P. Bassett W A, Weathers M S, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 [J]. Carbon, 1996, 34(2): 141-153.
    Mujica A, Rubio A, Munoz A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Rev Mod Phys, 2003, 75: 864-912.
    Degtyareva O, Gregoryanz E, Somayazulu M, et al. Novel chain structures in group Ⅵ elements [J]. Nature Mat, 2005, 4(2): 152-155.
    Mao W L, Mao H K, et al. Bonding changes in compressed superhard graphite [J]. Science, 2003, 302(5644): 425-427.
    Ma Y M, Eremets M, Oganov A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182-185.
    Mao H K, Hemley R J. The high-pressure dimension in earth and planetary science [J]. PNAS, 2007, 104(22): 9114-9115.
    Wang W H, Utsumi W, Wang X L. Pressure-temperature-time-transition diagram in a strong metallic supercooled liquid [J]. Europhys Lett, 2005, 71(4): 611-617.
    Berman R, Simon F. On the graphite-diamond equilibrium [J]. Z Elektrochem, 1955, 59: 333-338; Berman R. Physical Properties of Diamond [M]. Oxford University Press, 1965: 371; The Properties of Diamond [M]. London: Academic Press, 1979: 4.
    Bundy F P, Hall H T, Strong H M, et al. Man made diamond [J]. Nature, 1955, 176: 51-55.
    Bovenkerk H P, Bundy H P, Hall H T, et al. The preparation of diamond [J]. Nature, 1959, 184: 1094-1098.
    Bundy F P. Direct conversion of graphite to diamond in static pressure apparatus [J]. J Chem Phys, 1963, 38(3): 631-635.
    Akaishi M, Kanda H, Yamaoka S. Synthesis of diamond from graphite-carbonate system under very high temperature and pressure [J]. J Cryst Growth, 1990, 104(2): 578-581.
    Akaishi M, Kanda H, Yamaoka S. High pressure synthesis of diamond in the system of graphite-sulfate and graphite-hydroxide [J]. Jpn J Appl Phys, 1990, 29(7): L1172-L1174.
    Arima M, Nakayama K, Akaishi M, et al. Crystallization of diamond from a silicate melt of kimberlite compositon in high pressure and high temperature experiments [J]. Geology, 1993, 21(11): 968-970.
    Yamaoka S, Akaishi M, Kanda H, et al. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature [J]. J Crystal Growth, 1992, 125(12): 375-377.
    Hong S M, Akaishi M, Yamaoka S. Nucleation of diamond in the system of carbon and water under very high pressure and temperature [J]. J Crystal Growth, 1999, 200(12): 326-328.
    Yamaoka S, Shaji Kumar M D, Akaishi M, et al. Reaction between carbon and water under diamond-stable high pressure and high temperature conditions [J]. Diamond Related Materials, 2000, 9(8): 1480-1486.
    Yamaoka S, Shaji Kumar M D, Kanda H, et al. Thermal decomposition of glucose and diamond formation under diamond-stable high pressure high temperature conditions [J]. Diamond Related Mater, 2002, 11(1): 118-124.
    Wang Z X. Introduction of Thermodynamics [M]. Beijing: People's Education Press, 1964. (in Chinese)
    王竹溪. 热力学简程 [M]. 北京: 人民教育出版社, 1964.
    Feng D, Shi C X, Liu Z G. Introduction to Materials Science [M]. Beijing: Chemical Engineering Press, 2002: 555-562. (in Chinese)
    冯端, 师昌绪, 刘治国. 材料科学导论 [M]. 北京: 化学工业出版社, 2002: 555-562.
    Yu P, Wang W H, Wang R J, et al. Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression [J]. Appl Phys Lett, 2009, 94(1): 011910(1)-011910(3).
    Hong S M, Chen L Y, Liu X R, et al. High pressure jump apparatus for measuring Grneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate) [J]. Rev Sci Instrum, 2005, 76(5): 053905(1)-053905(6).
    Jia R, Shao C G, Su L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. J Phys D: Appl Phys, 2007, 40(12): 3763-3766.
    Hu Y, Su L, Liu X R, et al. Preparation of high-density nanocrystalline bulk selenium by rapid compressing of melt [J]. Chin Phys Lett, 2010, 27(3): 038101(1)-038101(4).
    Liu X R, Hong S M, L S J, et al. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression [J]. Appl Phys Lett, 2007, 91(8): 081910(1)-081910(3).
    Yuan C S, Liu X R, Shen R, et al. Preparation of thermo-stable bulk metallic glass of Nd60Cu20Ni10Al10 by rapid compression [J]. Chin Phys Lett, 2010, 27(9): 096202(1)-096202(4).
    Hong S M, Liu X R, Su L, et al. Rapid compression induced solidification of two amorphous phases of poly (ethylene terephthalate) [J]. J Phys D: Appl Phys, 2006, 39(16): 3684-3688.
    Yuan C S, Hong S M, Li X X, et al. Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone [J]. J Phys D: Appl Phys, 2011, 44(16): 165405(1)-165405(7).
    Wang M Y, Liu X R, Zhang C R, et al. Compression-rate dependence of solidified structure from melt in isotactic polypropylene [J]. J Phys D: Appl Phys, 2013, 46(14): 145307(1)-145307(5).
    Turnbull D. Under what conditions can a glass be formed? [J]. Contem Phys, 1969, 10(5): 473-488.
    Liu X R, Hong S M. Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses [J]. Appl Phys Lett, 2007, 90(25): 251903(1)-251903(3).
    Zhang D D, Liu X R, He Z, et al. Kinetic behaviors of phase transition of amorphous sulfur [C]//Proceeding of the 16th Conference of High Pressure Science of China. Yichang, 2012: 152. (in Chinese)
    张豆豆, 刘秀茹, 何竹, 等. 非晶硫的相变动力学行为 [C]//第十六届中国高压科学学术会议缩编文集. 宜昌, 2012: 152.
  • 加载中
计量
  • 文章访问数:  7346
  • HTML全文浏览量:  643
  • PDF下载量:  546
出版历程
  • 收稿日期:  2013-03-18
  • 修回日期:  2013-03-18
  • 发布日期:  2013-04-15

目录

    /

    返回文章
    返回